References
[1]. Al-Khafaji, G., Al-iesawi, S., & Abd Rajab, M. (2015). A hybrid lossy image compression based on wavelet transform, polynomial approximation model, bit plane slicing and absolute moment block truncation. International Journal of Computer Science and Mobile Computing, 4(6), 954-961.
[4]. Devi, S., & Gautam, A. (2016). Designing of an efficient image encryption-compression system using a New Haar and Coiflet with Daubchies and Symlet wavelet transforms. International Journal of Engineering Research and General Science, 4(2), 246-251.
[5]. Ibraheem, N. A., Hasan, M. M., Khan, R. Z., & Mishra, P. K. (2012). Understanding color models: A review. ARPN Journal of Science and Technology, 2(3), 265-275.
[6]. Jabber, A. K., & Tawfiq, L. N. M. (2018). New transform fundamental properties and its applications. Ibn Alhaitham Journal for Pure and Applied Science, 31(1), 151-163.
[7]. Kadhim, A. K., Merchany, A. B. S., & Babakir, A. (2019). An improved image compression technique using ezw and sphit algorithms. Ibn AL-Haitham Journal for Pure and Applied Sciences, 32(2), 145-155.
[8]. Kaur, S., & Rani, V. (2015). Designing an efficient image encryption-compression system using a new HAAR, SYMLET and COIFLET wavelet transform. International Journal of Computer Applications, 129(15), 1-6.
[10]. Kumar, V. S., & Reddy, M. I. S. (2012). Image compression techniques by using wavelet transform. Journal of Information Engineering and Applications, 2(5), 35-39.
[11]. Mitra, S. K., & Kaiser, J. F. (Eds.). (1993). Handbook for Digital Signal Processing. John Wiley & Sons.
[12].
Neelamani, R., De Queiroz, R., Fan, Z., Dash, S., & Baraniuk, R. G. (2006). JPEG compression history estimation for color images. IEEE Transactions on Image Processing, 15(6), 1365-1378.
[13]. Parmar, C. K., & Pancholi, K. (2015). A review on image compression techniques. Journal of Information, Knowledge and Research in Electrical Engineering, 2(2), 281-284.
[17]. Rajakumar, K. (2015). Implementation of Multiwavelet Transform Coding for Image Compression (Doctoral dissertation, Kalasalingam University).
[19]. Saha, S. (2000). Image compression—from DCT to wavelets: A review. XRDS: Crossroads, the ACM Magazine for Students, 6(3), 12-21.
[20]. Salomon, D. (2007). Variable-Length Codes for Data Compression. Springer Science & Business Media.
[21]. Samson, C., & Sastry, V. U. K. (2012). An RGB image encryption supported by wavelet-based lossless compression. International Journal of Advanced Computer Science and Applications, 3(9), 36-41.
[24]. Shrikhande, R. N., & Bairagi, V. K. (2013). Comparison of different methods for lossless medical image compression. Global Journal of Engineering, Design& Technology (GJEDT), 2(3), 36-40.
[25]. Singh, P., & Panda, S. A. (2014). Survey of image compression techniques. International Journal of Engineering and Innovative Technology (IJEIT), 4(2), 83- 86.
[28]. Swetha, K. P. (2013). Still image compression by using new wavelet bi-orthogonal filter coefficient. Indian Journal of Applied Research (IJAR), 3(7), 304-306.
[29]. Tawfiq, L. N. M., & Hussein, W. R. (2016). Design suitable neural network for processing face recognition. Global Journal of Engineering Science and Researches, 3(3), 58-64.
[30]. Tripathi, B. (2014). A Survey on Various Image Compression Techniques (Doctoral dissertation, National Institute of Technology).
[31]. Umbaugh, S. E. (1997). Computer Vision and Image Processing: A Practical Approach using Cviptools with Cdrom. Prentice Hall PTR.