References
[1].
Alajarmeh, O., Manalo, A., Benmokrane, B., Ferdous, W., Mohammed, A., Abousnina, R., & Edoo, A. (2020). Behavior of circular concrete columns reinforced with hollow composite sections and GFRP bars. Marine Structures, 72, 102785.
[2]. Alavi, A. H., & Gholizadeh, S. (2021). A comprehensive review of AI and machine learning techniques in structural health monitoring: Current trends and future directions. Applied Sciences, 11(2), 737.
[4]. Ding, H., & Zhang, J. (2022). Machine learning for structural health monitoring: a survey on recent advances and challenges. Sensors, 22(10), 3644.
[5].
Fernandez-Navamuel, A., Pardo, D., Magalhães, F., Zamora-Sánchez, D., Omella, Á. J., & Garcia-Sanchez,
D. (2025). Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data. Structural Health Monitoring, 24(1), 372-401.
[8]. Khan, M. A., & Khan, M. A. (2021). AI-Based smart monitoring and control of structural health: A review. Journal of Building Engineering, 34, 102042.
[9].
Koirala, G. R., Dhakal, R., Kim, E. S., Yao, Z., & Kim, N. Y. (2018). Radio frequency detection and characterization of water-ethanol solution through spiral-coupled passive micro-resonator sensor. Sensors, 18(4), 1075.
[10]. Lee, J., Yoon, Y., & Kim, H. (2019). Review of machine learning techniques for structural health monitoring. Structural Control and Health Monitoring, 26(8), e2391.
[12]. Liu, Y., Wang, C., & Xu, H. (2021). A deep learning approach to bridge structural health monitoring using wireless sensor networks. Journal of Civil Structural Health Monitoring, 11(2), 237-250.
[14].
Luo, L., Hu, S., Chen, K., Liu, Y., & Li, C. Z. (2024).
Exploring safety vulnerability in prefabricated construction and mitigation effects of internet of things. IEEE Transactions on Engineering Management, 71, 8531-8547.
[15]. Mengesha, G. (2024). Integrating AI in Structural Health Monitoring (SHM): A Systematic Review on Advances, Challenges, and Future Directions.
[16]. Mohan, P., Rao, K., & Kumar, P. (2020). Support vector machine-based approach for structural damage classification. Structural Engineering International, 30(4), 497-505.
[18]. Park, H., Kim, J., & Lee, K. (2019). Anomaly detection for high-rise buildings using autoencoders. Automation in Construction, 105, 102-112.
[20].
Qu, H., Li, M., Chen, G., Sneed, L. H., & Anderson, N. L. (2016). Multi-bandwidth wavelet transform of impact echo signals for delamination detection of thin concrete slabs. Journal of Civil Structural Health Monitoring, 6, 649-664.
[21]. Sadeghian, P., & Zainal, S. (2021). Challenges in the application of AI and machine learning for structural health monitoring: A review. Materials Today: Proceedings, 45, 4250-4256.
[22]. Soh, W. Y., & Wang, K. (2020). Machine learning for structural health monitoring: Applications, challenges, and future directions. Journal of Civil Engineering and Management, 26(7), 622-635.
[23]. Talbot, D. E., & Talbot, J. D. (2018). Corrosion Science and Cechnology. CRC Press.
[25]. Vapnik, V. (1999). The Nature of Statistical Learning Theory. Springer Science & Business Media.
[26]. Wang, L., Yu, X., & Zhang, Q. (2022). Predictive maintenance of high-rise structures using LSTM networks. IEEE Transactions on Intelligent Transportation Systems, 23(1), 327-336.
[27]. Xu, Y., Liu, Y., & Wang, J. (2019). Hybrid machine learning models for structural health monitoring of offshore platforms. Journal of Offshore Mechanics and Arctic Engineering, 141(3), 031401.
[28].
Yang, Z., Yang, H., Tian, T., Deng, D., Hu, M., Ma, J., & Wu, Z. (2023). A review on guided-ultrasonic-wave-based structural health monitoring: From fundamental theory to machine learning techniques. Ultrasonics, 133, 107014.
[30]. Zhao, Z., Cheng, L., & Li, X. (2021). Real-Time edge computing for structural health monitoring in offshore wind farms. IEEE Transactions on Industrial Informatics, 17(6), 3920-3928.
[31]. Zhou, H., Chen, X., & Hu, M. (2022). Deep learning in structural health monitoring: A comprehensive review and future directions. Mechanical Systems and Signal Processing, 167, 108469.
[32]. Zhou, Y., Chen, Y., & Zhang, L. (2020). Support vector machine-based anomaly detection for cable-stayed bridges. Journal of Bridge Engineering, 25(4), 04020026.