References
[1]. Akbal, F., & Camcı, S. (2010). Comparison of electrocoagulation and chemical coagulation for heavy
metal removal. Chemical Engineering & Technology,
33(10), 1655-1664. https://doi.org/10.1002/ceat.201000091
[2]. Alshawabkeh, A. N., Shen, Y., & Maillacheruvu, K. Y.
(2004). Effect of DC electric fields on COD in aerobic
mixed sludge processes. Environmental Engineering
Science, 21(3), 321-329. https://doi.org/10.1089/109287504323066969
[3]. Andrade, M. (2009). Heavy Metal Removal from Bilge
Water by Electrocoagulation Treatment (Doctoral Thesis,
University of New Orleans).
[4]. Arambarri, J., Abbassi, B., & Zytner, P. (2019).
Enhanced removal of phosphorus from wastewater using
sequential electrocoagulation and chemical coagulation.
Water, Air, & Soil Pollution, 230(12), 1-9. https://doi.org/10.1007/s11270-019-4367-7
[5]. Assadi, A., Soudavari, A., & Mohammadian, M.
(2016). Comparison of electrocoagulation and
chemical coagulation processes in removing reactive
red 196 from aqueous solution. Journal of Human,
Environment and Health Promotion, 1(3), 172-182.
[6]. Bechtold, T., Mader, C., & Mader, J. (2002). Cathodic
decolourization of textile dyebaths: tests with full scale
plant. Journal of Applied Electrochemistry, 32(9), 943-950. https://doi.org/10.1023/A:1020966801807
[7]. Bensadok, K. S., Benammar, S., Lapicque, F., &
Nezzal, G. (2008). Electrocoagulation of cutting oil
emulsions using aluminium plate electrodes. Journal of
Hazardous Materials, 152(1), 423-430. https://doi.org/10.1016/j.jhazmat.2007.06.121
[8]. Cañizares, P., Jiménez, C., Martínez, F., Rodrigo, M. A.,
& Sáez, C. (2009). The pH as a key parameter in the
choice between coagulation and electrocoagulation for
the treatment of wastewaters. Journal of Hazardous
Materials, 163(1), 158-164. https://doi.org/10.1016/j.jhazmat.2008. 06.073
[9]. Emara, M. M., Farid, N. A., Eltalawy, A. G. (2018).
Treatment of municipal wastewater by using electrocoagulation
at gharbyia govenorate, Egypt. International
Journal of Scientific & Engineering Research, 9(1), 1815-1820.
[10]. Hussein, T. K., & Jasim, N. A. (2021). A comparison
study between chemical coagulation and electrocoagulation
processes for the treatment of wastewater
containing reactive blue dye. Materials Today:
Proceedings, 42, 1946-1950. https://doi.org/10.1016/j.matpr.2020.12.240
[11]. Mollah, M. Y., Morkovsky, P., Gomes, J. A., Kesmez,
M., Parga, J., & Cocke, D. L. (2004). Fundamentals,
present and future perspectives of electrocoagulation.
Journal of Hazardous Materials, 114(1-3), 199-210.
https://doi.org/10.1016/j.jhazmat.2004.08.009
[12]. Öztürk, T., & Özcan, Ö. F. (2021). Effectiveness of
electrocoagulation and chemical coagulation methods
on paper industry wastewaters and optimum operating
parameters. Separation Science and Technology, 56(12),
2074-2086. https://doi.org/10.1080/01496395.2020.1805465
[13]. Padmaja, K., Cherukuri, J., & Reddy, M. A. (2020). A
comparative study of the efficiency of chemical
coagulation and electrocoagulation methods in the
treatment of pharmaceutical effluent. Journal of Water
Process Engineering, 34, 101153. https://doi.org/10.1016/j.jwpe.2020.101153
[14]. Tchamango, S. R., Kamdoum, O., Donfack, D., &
Babale, D. (2017). Comparison of electrocoagulation
and chemical coagulation processes in the treatment of
an effluent of a textile factory. Journal of Applied
Sciences and Environmental Management, 21(7), 1317-1322. https://doi.org/10.4314/jasem.v21i7.17
[15]. Tchamango, S., Kamdoum, O., Donfack, D.,
Babale, D., & Ngameni, E. (2016). Comparison of
electrocoagulation and chemical coagulation in the
treatment of artisanal tannery effluents. Nigerian Journal
of Technology, 35(1), 219-225. https://doi.org/10.4314/njt.v35i1.29
[16]. Tlaiaa, Y. S., Naser, Z. A. R., & Ali, A. H. (2020).
Comparison between coagulation and electrocoagulation
processes for the removal of reactive black dye RB-5 and
COD reduction. Desalination and Water Treatment, 195,
154-161. https://doi.org/10.5004/dwt.2020.25914
[17]. Tran, N., Drogui, P., Blais, J. F., & Mercier, G. (2012).
Phosphorus removal from spiked municipal wastewater
using either electrochemical coagulation or chemical
coagulation as tertiary treatment. Separation and
Purification Technology, 95, 16-25. https://doi.org/10.1016/j.seppur.2012.04.014
[18]. Ukiwe, L. N., Ibeneme, S. I., Duru, C. E., Okolue, B. N.,
Onyedika, G. O., & Nweze, C. A. (2014). Chemical and
electro-coagulation techniques in coagulationflocculation
in water and wastewater treatment-a review.
Journal of Advances in Chemistry, 9(3), 1988-1999.
[19]. Verma, M., & Kumar, R. N. (2018). Coagulation and
electrocoagulation for co-treatment of stabilized landfill
leachate and municipal wastewater. Journal of Water
Reuse and Desalination, 8(2), 234-243. https://doi.org/10.2166/wrd.2017.102
[20]. Zaleschi, L., Teodosiu, C., Cretescu, I., & Rodrigo, M.
A. (2012). A comparative study of electrocoagulation
and chemical coagulation processes applied for
wastewater treatment. Environmental Engineering &
Management Journal (EEMJ), 11(8), 1517-1525. https://doi.org/10.30638/eemj.2012.190