References
[1]. Adali, S., & Duffy, K. J. (1990). Optimal design of
antisymmetric hybrid laminates against thermal buckling. Journal of Thermal Stresses, 13(1), 57-71. https://doi.org/10.1080/01495739008927024
[2]. Arya, B., & Rajanna, T. (2021). Buckling behaviour of
composite laminates of trapezoidal panel with cutout
subjected to non-uniform in-plane edge loads. Materials
Today: Proceedings, 45, 21-26. https://doi.org/10.1016/j.matpr.2020.09.224
[3]. Ashok, K., Sikhakolli, S., & Prasad, S. S. (2014). Thermal
buckling analysis of laminated composite plate.
International Journal of Engineering Research &
Technology, 3(10), 1356-1358.
[4]. Bacciocchi, M., & Tarantino, A. M. (2019). Natural
frequency analysis of functionally graded orthotropic
cross-ply plates based on the finite element method.
Mathematical and Computational Applications, 24(2), 52. https://doi.org/10.3390/mca24020052
[5]. Balcioğlu, H. E., & Aktas, M. (2013). An investigation on
lateral buckling of laminated composites with
delamination. Indian Journal of Engineering & Materials
Sciences, 20, 367-375.
[6]. Chakrabarti, A., & Sheikh, A. H. (2003). Buckling of
laminated composite plates by a new element based on
higher order shear deformation theory. Mechanics of
Advanced Materials and Structures, 10(4), 303-317.
https://doi.org/10.1080/10759410306754
[7]. Chen, L. W., & Chen, L. Y. (1987). Thermal buckling of
laminated composite plates. Journal of Thermal Stresses,
10(4), 345-356. https://doi.org/10.1080/01495738708927017
[8]. Chen, L. W., & Chen, L. Y. (1989). Thermal buckling
analysis of composite laminated plates by the finiteelement
method. Journal of Thermal Stresses, 12(1), 41-56. https://doi.org/10.1080/01495738908961953
[9]. Chikkol, S. V., Wooday, P. K. P., & Yelaburgi, S. J. (2017).
Buckling of laminated composite cylindrical skew panels.
Journal of Thermoplastic Composite Materials, 30(9),
1175-1199. https://doi.org/10.1177/0892705715618741
[10]. Cottrell, J. A., Hughes, T. J., & Bazilevs, Y. (2009).
Isogeometric Analysis: Toward Integration of CAD and
FEA, John Wiley & Sons, (pp. 30).
[11]. Darvizeh, M., Darvizeh, A., Shaterzadeh, A. R., &
Ansari, R. (2010). Thermal buckling of spherical shells with
cut-out. Journal of Thermal Stresses, 33(5), 441-458.
https://doi.org/10.1080/01495731003738432
[12]. Dash, P., & Singh, B. N. (2012). Buckling and postbuckling
of laminated composite plates. Mechanics
Research Communications, 46, 1-7. https://doi.org/10.1016/j.mechrescom.2012.08.002
[13]. Dhurvey, P. (2017). Buckling analysis of composite
laminated skew plate of variable thickness. Materials
Today: Proceedings, 4(9), 9732-9736. https://doi.org/10.1016/j.matpr.2017.06.257
[14]. Eslami, M. R., & Javaheri, R. (1999). Buckling of
composite cylindrical shells under mechanical and
thermal loads. Journal of Thermal Stresses, 22(6), 527-545. https://doi.org/10.1080/014957399280733
[15]. Faidh-Allah, M. H. (2008). Behaviour of cross-ply
laminated hybrid composite plates with an inclined crack
subjected to a uniform temperature rise. Journal of
Engineering, 14(3), 1-10.
[16]. Gaira, N. S., Maurya, N. K., & Yadav, R. K. (2012).
Linear buckling analysis of laminated composite plate.
International Journal of Engineering Science &
Advanced Technology, 2(4), 886-891.
[17]. Goud, N. U. R., & Naidu, N. V. S. (2016). Investigation
on buckling of laminated composite plate. Journal of
Mechanical and Civil Engineering, 81-87, https://doi.org/10.9790/1684-16053048187
[18]. Guadagno, L., Raimondo, M., Vittoria, V., Vertuccio,
L., Lafdi, K., De Vivo, B., ... & Tucci, V. (2013). The role of
carbon nanofiber defects on the electrical and
mechanical properties of CNF-based resins.
Nanotechnology, 24(30), 305704. https://doi.org/10.1088/0957-4484/24/30/305704
[19]. Han, Z. Y., Cao, Z. L., & Fu, H. Y. (2015). Buckling
analysis of laminated composite plates with variable fibre
orientation angle. Materials Research Innovations,
19(sup5), S5-836-S5-842. https://doi.org/10.1179/1432891714Z.0000000001204
[20]. Kant, T., & Swaminathan, K. (2002). Analytical
solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined
theory. Composite Structures, 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
[21]. Katariya, P. V., & Panda, S. K. (2016). Thermal
buckling and vibration analysis of laminated composite
curved shell panel. Aircraft Engineering and Aerospace
Technology: An International Journal, 88(1), 97-107.
https://doi.org/10.1108/AEAT-11-2013-0202
[22]. Khani, A., Abdalla, M. M., & Gürdal, Z. (2012).
Circumferential stiffness tailoring of general cross section
cylinders for maximum buckling load with strength
constraints. Composite Structures, 94(9), 2851-2860.
https://doi.org/10.1016/j.compstruct.2012.04.018
[23]. Kiani, Y. (2018). NURBS-based isogeometric thermal
postbuckling analysis of temperature dependent
graphene reinforced composite laminated plates. Thin-
Walled Structures, 125, 211-219. https://doi.org/10.1016/j.tws.2018.01.024
[24]. Komur, M. A., Sen, F., Ataş, A., & Arslan, N. (2010).
Buckling analysis of laminated composite plates with an
elliptical/circular cutout using FEM. Advances in
Engineering Software, 41(2), 161-164. https://doi.org/10.1016/j.advengsoft.2009.09.005
[25]. Kumar, R., Lal, A., & Sutaria, B. M. (2021).
Comparative buckling analysis of laminated composite
plates with various shapes of hole. Materials Today:
Proceedings, 44, 4009-4012. https://doi.org/10.1016/j.matpr.2020.10.205
[26]. Kundu, C. K., & Sinha, P. K. (2007). Post buckling
analysis of laminated composite shells. Composite
Structures, 78(3), 316-324. https://doi.org/10.1016/j.compstruct.2005.10.005
[27]. Lal, A., Singh, B. N., & Kumar, R. (2009). Effects of
random system properties on the thermal buckling
analysis of laminated composite plates. Computers &
Structures, 87(17-18), 1119-1128. https://doi.org/10.1016/j.compstruc.2009.06.004
[28]. Lee, J. (1997). Thermally induced buckling of
laminated composites by a layerwise theory. Computers
& Structures, 65(6), 917-922. https://doi.org/10.1016/S0045-7949(96)00232-5
[29]. Liu, H., Yang, D., Hao, P., & Zhu, X. (2018).
Isogeometric analysis based topology optimization
design with global stress constraint. Computer Methods in
Applied Mechanics and Engineering, 342, 625-652.
https://doi.org/10.1016/j.cma.2018.08.013
[30]. Malekzadeh, P., & Shojaee, M. (2013). Buckling
analysis of quadrilateral laminated plates with carbon
nanotubes reinforced composite layers. Thin-Walled
Structures, 71, 108-118. https://doi.org/10.1016/j.tws.2013.05.008
[31]. Meyers, C. A., & Hyer, M. W. (1991). Thermal buckling
and postbuckling of symmetrically laminated composite
plates. Journal of Thermal Stresses, 14(4), 519-540.
https://doi.org/10.1080/01495739108927083
[32]. Mohamed, A. (2019). Synthesis, characterization,
and applications carbon nanofibers. Carbon-Based
Nanofillers and Their Rubber Nanocomposites, 243-257.
https://doi.org/10.1016/B978-0-12-813248-7.00008-0
[33]. Monteiro, J. I., & Daros, C. H. (2018). Buckling
analysis of laminated anisotropic Kirchhoff's plates via the
boundary element method. Latin American Journal of
Solids and Structures, 15(10), 1-23. https://doi.org/10.1590/1679-78254341
[34]. Nali, P., & Carrera, E. (2013). Accurate buckling
analysis of composite layered plates with combined
thermal and mechanical loadings. Journal of Thermal
Stresses, 36(1), 1-18. https://doi.org/10.1080/01495739.2012.663679
[35]. Narayan, A. L., Kumar, R. V., & Rao, G. K. (2018).
Effect of volume fraction on the thermal buckling analysis
of laminated composite plate with square/rectangular
cutout. Materials Today: Proceedings, 5(2), 5819-5829.
https://doi.org/10.1016/j.matpr.2017.12.179
[36]. Narayana, A. L., Kumar, R. V., & Rao, G. K. (2018).
Thermal buckling analysis of laminated composite plate
with square/rectangular, elliptical/circular cutout.
Materials Today: Proceedings, 5(2), 5354-5363.
https://doi.org/10.1016/j.matpr.2017.12.121
[37]. Ni, Q. Q., Xie, J., & Iwamoto, M. (2005). Buckling
analysis of laminated composite plates with arbitrary
edge supports. Composite Structures, 69(2), 209-217. https://doi.org/10.1016/j.compstruct.2004.06.012
[38]. Ni, Q. Q., Xie, J., & Maekawa, Z. (2003). Buckling
analysis of symmetrically laminated composite plates
using higher-order shear deformation theory under
various loading conditions. Journal of the Society of
Materials Science, Japan, 52(6), 612-618.
[39]. Ouinas, D., & Achour, B. (2013). Buckling analysis of
laminated composite plates [(θ/− θ)] containing an
elliptical notch. Composites Part B: Engineering, 55, 575-579. https://doi.org/10.1016/j.compositesb.2013.07.011
[40]. Özben, T. (2009). Analysis of critical buckling load of
laminated composites plate with different boundary
conditions using FEM and analytical methods.
Computational Materials Science, 45(4), 1006-1015.
https://doi.org/10.1016/j.commatsci.2009.01.003
[41]. Prabhu, M. R., & Dhanaraj, R. (1994). Thermal
buckling of laminated composite plates. Computers &
Structures, 53(5), 1193-1204. https://doi.org/10.1016/0045-7949(94)90166-X
[42]. Ram, K. S. S., & Sinha, P. K. (1992). Hygrothermal
effects on the buckling of laminated composite plates.
Composite Structures, 21(4), 233-247. https://doi.org/10.1016/0263-8223(92)90051-D
[43]. Ram, K. S., & Babu, T. S. (2002). Buckling of laminated
composite shells under transverse load. Composite
Structures, 55(2), 157-168. https://doi.org/10.1016/S0263-8223(01)00143-X
[44]. Shaterzadeh, A. R., Abolghasemi, S., & Rezaei, R.
(2014). Finite element analysis of thermal buckling of
rectangular laminated composite plates with circular cutout.
Journal of Thermal Stresses, 37(5), 604-623.
https://doi.org/10.1080/01495739.2014.885322
[45]. Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T., &
Vu, T. V. (2012). Free vibration and buckling analysis of
laminated composite plates using the NURBS-based
isogeometric finite element method. Composite
Structures, 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012
[46]. Shukla, K. K., Nath, Y., Kreuzer, E., & Kumar, K. V.
(2005). Buckling of laminated composite rectangular
plates. Journal of Aerospace Engineering, 18(4), 215-223. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:4(215)
[47]. Singh, D. B., & Singh, B. N. (2017). Assessment and
accuracy of new nonpolynomial shear deformation
theories for static analysis of laminated and braided
composite plates. Journal of Aerospace Engineering,
30(5), 04017056. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000768
[48]. Song, M., Yang, J., & Kitipornchai, S. (2018). Bending
and buckling analyses of functionally graded polymer
composite plates reinforced with graphene
nanoplatelets. Composites Part B: Engineering, 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043
[49]. Sreehari, V. M., & Maiti, D. K. (2015). Buckling and
post buckling analysis of laminated composite plates in
hygrothermal environment using an Inverse Hyperbolic
Shear Deformation Theory. Composite Structures, 129,
250-255. https://doi.org/10.1016/j.compstruct.2015.04.010
[50]. Stockton, S. L. (1997). Engineering and Design:
Composite Materials for Civil Engineering Structures.
Corps of Engineers, Washington, DC.
[51]. Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2018).
Biaxial buckling of thin laminated composite plates.
International Journal of Engineering Applied Sciences
and Technology, 2(12), 32-44.
[52]. Thai, C. H., Ferreira, A. J. M., Bordas, S. P. A., Rabczuk,
T., & Nguyen-Xuan, H. (2014). Isogeometric analysis of
laminated composite and sandwich plates using a new
inverse trigonometric shear deformation theor y.
European Journal of Mechanics-A/Solids, 43, 89-108.
https://doi.org/10.1016/j.euromechsol.2013.09.001
[53]. Thai, C. H., Nguyen-Xuan, H., Bordas, S. P. A.,
Nguyen-Thanh, N., & Rabczuk, T. (2015). Isogeometric
analysis of laminated composite plates using the higherorder
shear deformation theory. Mechanics of Advanced
Materials and Structures, 22(6), 451-469. https://doi.org/10.1080/15376494.2013.779050
[54]. Thai, C. H., Nguyen Xuan, H., Nguyen Thanh, N., Le,
T. H., Nguyen Thoi, T., & Rabczuk, T. (2012). Static, free
vibration, and buckling analysis of laminated composite
Reissner–Mindlin plates using NURBS based isogeometric
approach. International Journal for Numerical Methods
in Engineering, 91(6), 571-603. https://doi.org/10.1002/nme.4282
[55]. Tiwari, N. (n.d.). Introduction to Composites.
Retrieved from https://onlinecourses.nptel.ac.in/noc20_me95/preview
[56]. Tran, L. V., Thai, C. H., & Nguyen-Xuan, H. (2013). An
isogeometric finite element formulation for thermal
buckling analysis of functionally graded plates. Finite
Elements in Analysis and Design, 73, 65-76.
https://doi.org/10.1016/j.finel.2013.05.003
[57]. Tran, L. V., Wahab, M. A., & Kim, S. E. (2017). An
isogeometric finite element approach for thermal
bending and buckling analyses of laminated composite
plates. Composite Structures, 179, 35-49. https://doi.org/10.1016/j.compstruct.2017.07.056
[58]. Walker, M., Reiss, T., & Adali, S. (1996). Optimal
design of symmetrically laminated plates for maximum
buckling temperature. WIT Transactions on Engineering
Sciences, 10. https://doi.org/10.2495/CP960341
[59]. Walker, M., Reiss, T., Adali, S., & Verijenko, V. E.
(1997). Optimal design of symmetrically laminated plates
for maximum buckling temperature. Journal of Thermal
Stresses, 20(1), 21-33. https://doi.org/10.1080/01495739708956089
[60]. Xie, J., Ni, Q. Q., & Iwamoto, M. (2005). Buckling
analysis of laminated composite plates with internal
supports. Composite Structures, 69(2), 201-208.
https://doi.org/10.1016/j.compstruct.2004.06.011
[61]. Yin, L., Zhang, F., Deng, X., Wu, P., Zeng, H., & Liu, M.
(2019). Isogeometric bi-directional evolutionary structural
optimization. IEEE Access, 7, 91134-91145. https://doi.org/10.1109/ACCESS.2019.2927820