Cubic B-Splines to Perform Topology Optimization with Buckling Load on Carbon Fiber Nano Reinforced Simply Supported Cross Ply Laminated Composite Square Plates using Inverse Buckling Formulation

K. N. V. Chandrasekhar*, V. Bhikshma**
* Mahaveer Institute of Science and Technology, Vyasapuri, Keshavagiri, Hyderabad, Telangana, India.
** University College of Engineering, Osmania University, Hyderabad, Telangana, India.
Periodicity:September - November'2022
DOI : https://doi.org/10.26634/jce.12.4.18976

Abstract

Composite laminates are widely used in several civil engineering structures. Composite laminates are used in bridges, aircraft, and construction because of their light weight and high strength. The study on the behavior of these laminates is very important now. The main focus of this research is to propose a new method to perform topology optimization of nano-reinforced composite laminates carrying buckling loads. The goal is to present the optimal layout of the material, stress distribution at the optimal state, buckling load factors at the optimal state, and most importantly, the deformed profile of the composite laminate at the optimal state. The elastic stiffness matrix and the geometric stiffness matrix can be used to determine the buckling load. The reason for taking the reciprocal of the buckling load is that during optimization, the number of elements that are not participating in carrying the load increases, and hence the stress carried by these elements is minimal. Hence, we have considered the inverse value of the buckling load factor. The design domain is modelled using cubic b-splines. Higher-order shear deformation theory is used, and isogeometric analysis is performed to determine the buckling load. The deformed profile of the plate at the optimal state, the optimal layout of the material, stress distribution, buckling load factors, and the corresponding mode shapes are given as well. Only carbon fiber nano-reinforced, cross-ply square plates with a simple support structure have been considered. Three different types of loading conditions, namely uniaxial compressive loading, bi-axial compressive loading, and pure shear loading, are considered. Coding is done in MatLab®, and the buckling load factors are determined. Several examples from the literature are considered with different moduli ratios, laminae, and span to thickness ratios, and the non-dimensional buckling load is determined for each. The results obtained are in good agreement with those given in the literature.

Keywords

Cubic B-Splines, Topology, Carbon Fiber, Nano Reinforced, Laminate, Inverse Buckling.

How to Cite this Article?

Chandrasekhar, K. N. V., and Bhikshma, V. (2022). Cubic B-Splines to Perform Topology Optimization with Buckling Load on Carbon Fiber Nano Reinforced Simply Supported Cross Ply Laminated Composite Square Plates using Inverse Buckling Formulation. i-manager’s Journal on Civil Engineering, 12(4), 11-41. https://doi.org/10.26634/jce.12.4.18976

References

[1]. Adali, S., & Duffy, K. J. (1990). Optimal design of antisymmetric hybrid laminates against thermal buckling. Journal of Thermal Stresses, 13(1), 57-71. https://doi.org/10.1080/01495739008927024
[2]. Arya, B., & Rajanna, T. (2021). Buckling behaviour of composite laminates of trapezoidal panel with cutout subjected to non-uniform in-plane edge loads. Materials Today: Proceedings, 45, 21-26. https://doi.org/10.1016/j.matpr.2020.09.224
[3]. Ashok, K., Sikhakolli, S., & Prasad, S. S. (2014). Thermal buckling analysis of laminated composite plate. International Journal of Engineering Research & Technology, 3(10), 1356-1358.
[4]. Bacciocchi, M., & Tarantino, A. M. (2019). Natural frequency analysis of functionally graded orthotropic cross-ply plates based on the finite element method. Mathematical and Computational Applications, 24(2), 52. https://doi.org/10.3390/mca24020052
[5]. Balcioğlu, H. E., & Aktas, M. (2013). An investigation on lateral buckling of laminated composites with delamination. Indian Journal of Engineering & Materials Sciences, 20, 367-375.
[6]. Chakrabarti, A., & Sheikh, A. H. (2003). Buckling of laminated composite plates by a new element based on higher order shear deformation theory. Mechanics of Advanced Materials and Structures, 10(4), 303-317. https://doi.org/10.1080/10759410306754
[7]. Chen, L. W., & Chen, L. Y. (1987). Thermal buckling of laminated composite plates. Journal of Thermal Stresses, 10(4), 345-356. https://doi.org/10.1080/01495738708927017
[8]. Chen, L. W., & Chen, L. Y. (1989). Thermal buckling analysis of composite laminated plates by the finiteelement method. Journal of Thermal Stresses, 12(1), 41-56. https://doi.org/10.1080/01495738908961953
[9]. Chikkol, S. V., Wooday, P. K. P., & Yelaburgi, S. J. (2017). Buckling of laminated composite cylindrical skew panels. Journal of Thermoplastic Composite Materials, 30(9), 1175-1199. https://doi.org/10.1177/0892705715618741
[10]. Cottrell, J. A., Hughes, T. J., & Bazilevs, Y. (2009). Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons, (pp. 30).
[11]. Darvizeh, M., Darvizeh, A., Shaterzadeh, A. R., & Ansari, R. (2010). Thermal buckling of spherical shells with cut-out. Journal of Thermal Stresses, 33(5), 441-458. https://doi.org/10.1080/01495731003738432
[12]. Dash, P., & Singh, B. N. (2012). Buckling and postbuckling of laminated composite plates. Mechanics Research Communications, 46, 1-7. https://doi.org/10.1016/j.mechrescom.2012.08.002
[13]. Dhurvey, P. (2017). Buckling analysis of composite laminated skew plate of variable thickness. Materials Today: Proceedings, 4(9), 9732-9736. https://doi.org/10.1016/j.matpr.2017.06.257
[14]. Eslami, M. R., & Javaheri, R. (1999). Buckling of composite cylindrical shells under mechanical and thermal loads. Journal of Thermal Stresses, 22(6), 527-545. https://doi.org/10.1080/014957399280733
[15]. Faidh-Allah, M. H. (2008). Behaviour of cross-ply laminated hybrid composite plates with an inclined crack subjected to a uniform temperature rise. Journal of Engineering, 14(3), 1-10.
[16]. Gaira, N. S., Maurya, N. K., & Yadav, R. K. (2012). Linear buckling analysis of laminated composite plate. International Journal of Engineering Science & Advanced Technology, 2(4), 886-891.
[17]. Goud, N. U. R., & Naidu, N. V. S. (2016). Investigation on buckling of laminated composite plate. Journal of Mechanical and Civil Engineering, 81-87, https://doi.org/10.9790/1684-16053048187
[18]. Guadagno, L., Raimondo, M., Vittoria, V., Vertuccio, L., Lafdi, K., De Vivo, B., ... & Tucci, V. (2013). The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology, 24(30), 305704. https://doi.org/10.1088/0957-4484/24/30/305704
[19]. Han, Z. Y., Cao, Z. L., & Fu, H. Y. (2015). Buckling analysis of laminated composite plates with variable fibre orientation angle. Materials Research Innovations, 19(sup5), S5-836-S5-842. https://doi.org/10.1179/1432891714Z.0000000001204
[20]. Kant, T., & Swaminathan, K. (2002). Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Composite Structures, 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
[21]. Katariya, P. V., & Panda, S. K. (2016). Thermal buckling and vibration analysis of laminated composite curved shell panel. Aircraft Engineering and Aerospace Technology: An International Journal, 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
[22]. Khani, A., Abdalla, M. M., & Gürdal, Z. (2012). Circumferential stiffness tailoring of general cross section cylinders for maximum buckling load with strength constraints. Composite Structures, 94(9), 2851-2860. https://doi.org/10.1016/j.compstruct.2012.04.018
[23]. Kiani, Y. (2018). NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates. Thin- Walled Structures, 125, 211-219. https://doi.org/10.1016/j.tws.2018.01.024
[24]. Komur, M. A., Sen, F., Ataş, A., & Arslan, N. (2010). Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM. Advances in Engineering Software, 41(2), 161-164. https://doi.org/10.1016/j.advengsoft.2009.09.005
[25]. Kumar, R., Lal, A., & Sutaria, B. M. (2021). Comparative buckling analysis of laminated composite plates with various shapes of hole. Materials Today: Proceedings, 44, 4009-4012. https://doi.org/10.1016/j.matpr.2020.10.205
[26]. Kundu, C. K., & Sinha, P. K. (2007). Post buckling analysis of laminated composite shells. Composite Structures, 78(3), 316-324. https://doi.org/10.1016/j.compstruct.2005.10.005
[27]. Lal, A., Singh, B. N., & Kumar, R. (2009). Effects of random system properties on the thermal buckling analysis of laminated composite plates. Computers & Structures, 87(17-18), 1119-1128. https://doi.org/10.1016/j.compstruc.2009.06.004
[28]. Lee, J. (1997). Thermally induced buckling of laminated composites by a layerwise theory. Computers & Structures, 65(6), 917-922. https://doi.org/10.1016/S0045-7949(96)00232-5
[29]. Liu, H., Yang, D., Hao, P., & Zhu, X. (2018). Isogeometric analysis based topology optimization design with global stress constraint. Computer Methods in Applied Mechanics and Engineering, 342, 625-652. https://doi.org/10.1016/j.cma.2018.08.013
[30]. Malekzadeh, P., & Shojaee, M. (2013). Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin-Walled Structures, 71, 108-118. https://doi.org/10.1016/j.tws.2013.05.008
[31]. Meyers, C. A., & Hyer, M. W. (1991). Thermal buckling and postbuckling of symmetrically laminated composite plates. Journal of Thermal Stresses, 14(4), 519-540. https://doi.org/10.1080/01495739108927083
[32]. Mohamed, A. (2019). Synthesis, characterization, and applications carbon nanofibers. Carbon-Based Nanofillers and Their Rubber Nanocomposites, 243-257. https://doi.org/10.1016/B978-0-12-813248-7.00008-0
[33]. Monteiro, J. I., & Daros, C. H. (2018). Buckling analysis of laminated anisotropic Kirchhoff's plates via the boundary element method. Latin American Journal of Solids and Structures, 15(10), 1-23. https://doi.org/10.1590/1679-78254341
[34]. Nali, P., & Carrera, E. (2013). Accurate buckling analysis of composite layered plates with combined thermal and mechanical loadings. Journal of Thermal Stresses, 36(1), 1-18. https://doi.org/10.1080/01495739.2012.663679
[35]. Narayan, A. L., Kumar, R. V., & Rao, G. K. (2018). Effect of volume fraction on the thermal buckling analysis of laminated composite plate with square/rectangular cutout. Materials Today: Proceedings, 5(2), 5819-5829. https://doi.org/10.1016/j.matpr.2017.12.179
[36]. Narayana, A. L., Kumar, R. V., & Rao, G. K. (2018). Thermal buckling analysis of laminated composite plate with square/rectangular, elliptical/circular cutout. Materials Today: Proceedings, 5(2), 5354-5363. https://doi.org/10.1016/j.matpr.2017.12.121
[37]. Ni, Q. Q., Xie, J., & Iwamoto, M. (2005). Buckling analysis of laminated composite plates with arbitrary edge supports. Composite Structures, 69(2), 209-217. https://doi.org/10.1016/j.compstruct.2004.06.012
[38]. Ni, Q. Q., Xie, J., & Maekawa, Z. (2003). Buckling analysis of symmetrically laminated composite plates using higher-order shear deformation theory under various loading conditions. Journal of the Society of Materials Science, Japan, 52(6), 612-618.
[39]. Ouinas, D., & Achour, B. (2013). Buckling analysis of laminated composite plates [(θ/− θ)] containing an elliptical notch. Composites Part B: Engineering, 55, 575-579. https://doi.org/10.1016/j.compositesb.2013.07.011
[40]. Özben, T. (2009). Analysis of critical buckling load of laminated composites plate with different boundary conditions using FEM and analytical methods. Computational Materials Science, 45(4), 1006-1015. https://doi.org/10.1016/j.commatsci.2009.01.003
[41]. Prabhu, M. R., & Dhanaraj, R. (1994). Thermal buckling of laminated composite plates. Computers & Structures, 53(5), 1193-1204. https://doi.org/10.1016/0045-7949(94)90166-X
[42]. Ram, K. S. S., & Sinha, P. K. (1992). Hygrothermal effects on the buckling of laminated composite plates. Composite Structures, 21(4), 233-247. https://doi.org/10.1016/0263-8223(92)90051-D
[43]. Ram, K. S., & Babu, T. S. (2002). Buckling of laminated composite shells under transverse load. Composite Structures, 55(2), 157-168. https://doi.org/10.1016/S0263-8223(01)00143-X
[44]. Shaterzadeh, A. R., Abolghasemi, S., & Rezaei, R. (2014). Finite element analysis of thermal buckling of rectangular laminated composite plates with circular cutout. Journal of Thermal Stresses, 37(5), 604-623. https://doi.org/10.1080/01495739.2014.885322
[45]. Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T., & Vu, T. V. (2012). Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method. Composite Structures, 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012
[46]. Shukla, K. K., Nath, Y., Kreuzer, E., & Kumar, K. V. (2005). Buckling of laminated composite rectangular plates. Journal of Aerospace Engineering, 18(4), 215-223. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:4(215)
[47]. Singh, D. B., & Singh, B. N. (2017). Assessment and accuracy of new nonpolynomial shear deformation theories for static analysis of laminated and braided composite plates. Journal of Aerospace Engineering, 30(5), 04017056. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000768
[48]. Song, M., Yang, J., & Kitipornchai, S. (2018). Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composites Part B: Engineering, 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043
[49]. Sreehari, V. M., & Maiti, D. K. (2015). Buckling and post buckling analysis of laminated composite plates in hygrothermal environment using an Inverse Hyperbolic Shear Deformation Theory. Composite Structures, 129, 250-255. https://doi.org/10.1016/j.compstruct.2015.04.010
[50]. Stockton, S. L. (1997). Engineering and Design: Composite Materials for Civil Engineering Structures. Corps of Engineers, Washington, DC.
[51]. Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2018). Biaxial buckling of thin laminated composite plates. International Journal of Engineering Applied Sciences and Technology, 2(12), 32-44.
[52]. Thai, C. H., Ferreira, A. J. M., Bordas, S. P. A., Rabczuk, T., & Nguyen-Xuan, H. (2014). Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theor y. European Journal of Mechanics-A/Solids, 43, 89-108. https://doi.org/10.1016/j.euromechsol.2013.09.001
[53]. Thai, C. H., Nguyen-Xuan, H., Bordas, S. P. A., Nguyen-Thanh, N., & Rabczuk, T. (2015). Isogeometric analysis of laminated composite plates using the higherorder shear deformation theory. Mechanics of Advanced Materials and Structures, 22(6), 451-469. https://doi.org/10.1080/15376494.2013.779050
[54]. Thai, C. H., Nguyen Xuan, H., Nguyen Thanh, N., Le, T. H., Nguyen Thoi, T., & Rabczuk, T. (2012). Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS based isogeometric approach. International Journal for Numerical Methods in Engineering, 91(6), 571-603. https://doi.org/10.1002/nme.4282
[55]. Tiwari, N. (n.d.). Introduction to Composites. Retrieved from https://onlinecourses.nptel.ac.in/noc20_me95/preview
[56]. Tran, L. V., Thai, C. H., & Nguyen-Xuan, H. (2013). An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elements in Analysis and Design, 73, 65-76. https://doi.org/10.1016/j.finel.2013.05.003
[57]. Tran, L. V., Wahab, M. A., & Kim, S. E. (2017). An isogeometric finite element approach for thermal bending and buckling analyses of laminated composite plates. Composite Structures, 179, 35-49. https://doi.org/10.1016/j.compstruct.2017.07.056
[58]. Walker, M., Reiss, T., & Adali, S. (1996). Optimal design of symmetrically laminated plates for maximum buckling temperature. WIT Transactions on Engineering Sciences, 10. https://doi.org/10.2495/CP960341
[59]. Walker, M., Reiss, T., Adali, S., & Verijenko, V. E. (1997). Optimal design of symmetrically laminated plates for maximum buckling temperature. Journal of Thermal Stresses, 20(1), 21-33. https://doi.org/10.1080/01495739708956089
[60]. Xie, J., Ni, Q. Q., & Iwamoto, M. (2005). Buckling analysis of laminated composite plates with internal supports. Composite Structures, 69(2), 201-208. https://doi.org/10.1016/j.compstruct.2004.06.011
[61]. Yin, L., Zhang, F., Deng, X., Wu, P., Zeng, H., & Liu, M. (2019). Isogeometric bi-directional evolutionary structural optimization. IEEE Access, 7, 91134-91145. https://doi.org/10.1109/ACCESS.2019.2927820
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.