References
[1]. Arivalagan, S. (2014). Sustainable studies on concrete with GGBS as a replacement material in cement. Jordan
Journal of Civil Engineering, 8(3), 263-270.
[2]. Arslan, H., & Baykal, G. (2006). Utilization of fly ash as
engineering pellet aggregates. Environmental Geology,
50(5), 761-770. https://doi.org/10.1007/s00254-006-0248-7
[3]. Harikrishnan, K. I., & Ramamurthy, K. (2006). Influence
of pelletization process on the properties of fly ash
aggregates. Waste Management, 26(8), 846-852.
https://doi.org/10.1016/j.wasman.2005.10.012
[4]. Ramamurthy, K., & Harikrishnan, K. I. (2006). Influence
of binders on properties of sintered fly ash aggregate.
Cement and Concrete Composites, 28(1), 33-38.
https://doi.org/10.1016/j.cemconcomp.2005.06.005
[5]. Arezoumandi, M., & Volz, J. S. (2013). Effect of fly ash
replacement level on the shear strength of high-volume
fly ash concrete beams. Journal of Cleaner Production,
59, 120-130. https://doi.org/10.1016/j.jclepro.2013.06.043
[6]. Kayali, O. (2008). Fly ash lightweight aggregates in
high performance concrete. Construction and Building
Materials, 22(12), 2393-2399. https://doi.org/10.1016/j.conbuildmat.2007.09.001
[7]. Gomathi, P., & Sivakumar, A. (2015). Accelerated
curing effects on the mechanical performance of cold
bonded and sintered fly ash aggregate concrete.
Construction and Building Materials, 77, 276-287.
https://doi.org/10.1016/j.conbuildmat.2014.12.108
[8]. Babu, K. G., & Kumar, V. S. R. (2000). Efficiency of
GGBS in concrete. Cement and Concrete Research,
30(7), 1031-1036. https://doi.org/10.1016/S0008-8846(00)00271-4
[9]. Lloyd, N. A., & Rangan, B. V. (2010). Fly ash based
Geopolymer Concrete. Curtin University of Technology,
Australia.
[10]. Davidovits, J. (2017). Geopolymers: Ceramic-like
inorganic polymers. Journal of Ceramic Science and
Technology, 8(3), 335-350. https://doi.org/10.4416/JCST2017-00038
[11] . Menon, S. U., Anand, K. B., & Sharma, A. K. (2018,
February). Performance evaluation of alkali-activated
coal-ash aggregate in concrete. In Proceedings of the Institution of Civil Engineers-Waste and Resource
Management, 171(1), 4-13. https://doi.org/10.1680/jwarm.17.00033
[12]. Venugopal, K., Radhakrishna, & Sasalatti, V. (2016,
September). Development of alkali activated
geopolymer masonry blocks. In IOP Conference Series:
Materials Science and Engineering, 149(1), 1-12.
https://doi.org/10.1088/1757-899X/149/1/012072
[13]. Oner, A., & Akyuz, S. (2007). An experimental study
on optimum usage of GGBS for the compressive strength
of concrete. Cement and Concrete Composites, 29(6),
505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
[14]. Chidiac, S. E., & Panesar, D. K. (2008). Evolution of
mechanical properties of concrete containing ground
granulated blast furnace slag and effects on the scaling
resistance test at 28 days. Cement and Concrete
Composites, 30(2), 63-71. https://doi.org/10.1016/j.cemconcomp.2007.09.003
[15]. Johari, M. M., Brooks, J. J., Kabir, S., & Rivard, P.
(2011). Influence of supplementary cementitious materials on engineering properties of high strength
concrete. Construction and Building Materials, 25(5),
2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013
[16]. Bijen, J. (1996). Benefits of slag and fly ash.
Construction and Building Materials, 10(5), 309-314.
https://doi.org/10.1016/0950-0618(95)00014-3
[17]. United Nations Environment Programme. (2014).
Sand, Rarer than One Thinks: UNEP Global Environmental
Alert Service (GEAS) - March 2014. Retrieved from
https://wedocs.unep.org/handle/20.500.11822/8665
[18] Central Electricity Authority. (2017). Report on Fly ash
Generation at Coal/Lignite Based Thermal Power Stations
and its Utilization in the Country for the Year 2016- 2017.
Retrieved from https://cea.nic.in/wp-content/uploads/2020/04/flyash_final_1516.pdf
[19]. Manikandan, R., & Ramamurthy, K. (2007).
Influence of fineness of fly ash on the aggregate
pelletization process. Cement and Concrete
Composites, 29(6), 456-464. https://doi.org/10.1016/j.cemconcomp.2007.01.002