A Multiple Input DC-DC Converter for Solar PV Application with High Boosting Capability

Kavita Tamboli*, Naveen Goel**
*-** Department of Electrical & Electronics Engineering, Shri Shankaracharya Technical Campus- Shri Shankaracharya Group of Institutions, Bhilai, Chhattisgarh, India.
Periodicity:February - April'2022
DOI : https://doi.org/10.26634/jps.10.1.18874

Abstract

A Multiple-Input Boost Converter (MIBC) with high boosting ability is suggested in this article. This converter can be utilized for solar photovoltaic applications. The converter is capable of driving continuous current from the sources. The converter's steady-state analysis is presented. The Maximum Power Point (MPP) tracking algorithm is applied for the absorption of peak power produced from the solar panels individually and simultaneously. The suggested converter can attain the voltage gain up to 20 times with maintaining continuity in the input current. The proposed MIBC's open-loop steady-state operation is validated in a simulation environment.

Keywords

Boost Converter, DC-DC Converter, Multiple-Input Boost Converter (MIBC).

How to Cite this Article?

Tamboli, K., and Goel, N. (2022). A Multiple Input DC-DC Converter for Solar PV Application with High Boosting Capability. i-manager’s Journal on Power Systems Engineering, 10(1), 24-30. https://doi.org/10.26634/jps.10.1.18874

References

[1]. Jain, S., & Agarwal, V. (2007). A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking. IEEE Transactions on Power Electronics, 22(5), 1928-1940. https://doi.org/10.1109/TPEL.2007. 904202
[2]. Kong, X., & Khambadkone, A. M. (2007). Analysis and implementation of a high efficiency, interleaved currentfed full bridge converter for fuel cell system. IEEE Transactions on Power Electronics, 22(2), 543-550. https://doi.org/10.1109/TPEL.2006.889985
[3]. Liu, C., & Lai, J. S. (2007). Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load. IEEE Transactions on Power Electronics, 22(4), 1429-1436. https://doi.org/10.1109/TPEL.2007. 900594
[4]. Ismail, E. H., Al-Saffar, M. A., Sabzali, A. J., & Fardoun, A. A. (2008). A family of single-switch PWM converters with high step-up conversion ratio. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(4), 1159-1171. https://doi.org/10.1109/TCSI.2008.916427
[5]. Erickson, R. W., & Maksimovic, D. (2001). Fundamentals of Power Electronics. Springer, (pp. 904).
[6]. Li, W., & He, X. (2008). A family of interleaved DC–DC converters deduced from a basic cell with winding-crosscoupledinductors (WCCIs) for high step-upor step-down conversions. IEEE Transactions on Power Electronics, 23(4), 1791-1801. https://doi.org/10.1109/TPEL.2008.925204
[7]. Li, W., & He, X. (2007). An interleaved winding-coupled boost converter with passive lossless clamp circuits. IEEE Transactions on Power Electronics, 22(4), 1499-1507. https://doi.org/10.1109/TPEL.2007.900521
[8]. Li, W., Zhao, Y., Deng, Y., & He, X. (2010). Interleaved converter with voltage multiplier cell for high step-up and high-efficiency conversion. IEEE Transactions on Power Electronics, 25(9), 2397-2408. https://doi.org/10.1109/TPEL.2010.2048 340
[9]. Hsieh, Y. P., Chen, J. F., Liang, T. J., & Yang, L. S. (2010). A novel high step-up DC–DC converter for a microgrid system. IEEE Transactions on Power Electronics, 26(4), 1127-1136. https://doi.org/10.1109/TPEL.2010.2096826
[10]. Xie, R., Li, W., Zhao, Y., Zhao, J., He, X., & Cao, F. (2010). Performance analysis of isolated ZVT interleaved converter with winding-cross-coupled inductors and switched-capacitors. In 2010, IEEE Energy Conversion Congress and Exposition, 2025-2029. https://doi.org/ 10.1109/ECCE. 2010.5618103
[11]. Li, W., Li, W., He, X., Xu, D., & Wu, B. (2011). General derivation law of nonisolated high-step-up interleaved converters with built-in transformer. IEEE Transactions on Industrial Electronics, 59(3), 1650-1661. https://doi.org/10.1109/TIE. 2011.2163375
[12]. Tseng, K. C., Huang, C. C., & Shih, W. Y. (2012). A high step-up converter with a voltage multiplier module for a photovoltaic system. IEEE Transactions on Power Electronics, 28(6), 3047-3057. https://doi.org/10.1109/TPEL.2012. 2217157
[13]. Li, W., Zhao, Y., Wu, J., & He, X. (2009). Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells. IEEE Transactions on Power Electronics, 27(1), 133-143. https://doi.org/10.1109/TPEL.2009. 2028688
[14]. Tseng, K. C., & Huang, C. C. (2013). High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Transactions on Industrial Electronics, 61(3), 1311-1319. https://doi.org/10.1109/TIE.2013.2261036
[15]. Hu, Y., Deng, Y., Long, J., Lu, X., & He, X. (2013). A high step-up passive absorption circuit used in nonisolated high step-up converter. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 1966-1971. https://doi.org/10.1109/APEC.2013. 6520564
[16]. Gummi, K., & Ferdowsi, M. (2008). Synthesis of double-input dc-dc converters using a single-pole triplethrow switch as a building block. In 2008 IEEE Power Electronics Specialists Conference, 2819-2823. https://doi.org/10.1109/PESC.2008.4592373
[17]. Prabhala, V. A. K., Somayajula, D., & Ferdowsi, M. (2009). Power sharing in a double-input buck converter using dead-time control. In 2009 IEEE Energy Conversion Congress and Exposition, 2621-2626. https://doi.org/10.1109/ECCE. 2009.5316355
[18]. Lee, S., Kim, P., & Choi, S. (2012). High step-up softswitched converters using voltage multiplier cells. IEEE Transactions on Power Electronics, 28(7), 3379-3387. https://doi.org/10.1109/TPEL.2012.2227508
[19]. Young, C. M., Chen, M. H., Chang, T. A., Ko, C. C., & Jen, K. K. (2012). Cascade Cockcroft–Walton voltage multiplier applied to transformerless high step-up DC–DC converter. IEEE Transactions on Industrial Electronics, 60(2), 523-537. https://doi.org/10.1109/TIE.2012.2188255
[20]. Dickson, J. F. (1976). On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE Journal of Solid-State Circuits, 11(3), 374-378. https://doi.org/10.1109/JSSC.1976.1050739
[21]. Jang, Y., & Jovanovic, M. M. (2007). Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end. IEEE Transactions on Power Electronics, 22(4), 1394-1401. https://doi.org/10.1109/TPEL.2007.900502
[22]. Prudente, M., Pfitscher, L. L., Emmendoerfer, G., Romaneli, E. F., & Gules, R. (2008). Voltage multiplier cells applied to non-isolated DC–DC converters. IEEE Transactions on Power Electronics, 23(2), 871-887. https://doi.org/10.1109/TPEL.2007.915762
[23]. Shen, Z. J., Xiong, Y., Cheng, X., Fu, Y., & Kumar, P. (2006). Power MOSFET switching loss analysis: A new insight. In Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, 3, 1438-1442. https://doi.org/10.1109/IAS.2006.256719
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.