References
[1]. ACI Committee 363. (1997). State-of-the-Art Report
on High-Strength Concrete. Retrieved from
https://www.academia.edu/8275753/ACI_363r_92_State_of_the_Art_Report_on_High_Strength_Concrete
[2]. Aïtcin, P. C., & Mehta, P. K. (1990). Effect of coarse
aggregate characteristics on mechanical properties of
high-strength concrete. Materials Journal, 87(2), 103-107.
[3]. Bache, H. (1987). High-Strength Concrete
Development through 25 Years. CBL Reprint No. 17,
Aalborg Portland, Aalborg, Denmark.
[4]. Bonavetti, V. L., & Irassar, E. F. (1994). The effect of
stone dust content in sand. Cement and Concrete
Research, 24(3), 580-590. https://doi.org/10.1016/0008-8846(94)90147-3
[5]. Boopathi, Y., & Doraikkannan, J. (2016). Study on msand
as a partial replacement of fine aggregate in
concrete. International Journal of Advanced Research
Trends in Engineering and Technology, 3(2), 746–749.
[6]. Celik, T., & Marar, K. (1996). Effects of crushed stone
dust on some properties of concrete. Cement and
Concrete Research, 26(7), 1121-1130. https://doi.org/10.1016/0008-8846(96)00078-6
[7]. Farney, J. A., & Panarese, W. C. (1994). High-Strength
Concrete. Portland cement association, Skokie, USA.
[8]. Gambhir, M. L. (1986). Concrete Technology. Tata
McGraw Hill, New Delhi.
[9]. Ghannam, S., Najm, H., & Vasconez, R. (2016).
Experimental study of concrete made with granite and
iron powders as partial replacement of sand. Sustainable
Materials and Technologies, 9, 1-9. https://doi.org/10.1016/j.susmat.2016.06.001
[10]. Giaccio, G., Rocco, C., Violini, D., Zappitelli, J., &
Zerbino, R. (1992). High-strength concretes incorporating
different coarse aggregates. Materials Journal, 89(3),
242-246.
[11]. Gjorv, O. E. (1992). High-strength concrete.
Proceedings of the International Conference on
Advances in Concrete Technology.
[12]. Godman, A., & Bentur, A. (1989). Bond effects in high-strength silica fume concretes. Materials Journal,
86(5), 440-449.
[13]. Ho, D. S., Sheinn, A. M. M., Ng, C. C., & Tam, C. T.
(2002). The use of quarry dust for SCC applications.
Cement and Concrete Research, 32(4), 505-511.
https://doi.org/10.1016/S0008-8846(01)00726-8
[14]. Hogan, F. J., & Meusel, J. W. (1981). Evaluation for
durability and strength development of a ground
granulated blast furnace slag. Cement, Concrete and
Aggregates, 3(1), 40-52.
[15]. Hwang, C. L., & Lin, C. Y. (1986). Strength
development of blended blast furnace slag cement
mortars. Journal of the Chinese Institute of Engineers, 9(3),
233-239. https://doi.org/10.1080/02533839.1986.9676884
[16]. Idrees, M., & Faiz, A. (2019, July). Utilization of Waste
Quarry Dust and Marble Powder in Concrete. In
Proceedings of the Fifth International Conference on
Sustainable Construction Materials and Technologies
(SCMT5), London, UK (pp. 14-17).
[17]. Kankam, C. K., Meisuh, B. K., Sossou, G., & Buabin, T.
K. (2017). Stress-strain characteristics of concrete
containing quarry rock dust as partial replacement of
sand. Case Studies in Construction Materials, 7, 66-72.
https://doi.org/10.1016/j.cscm.2017.06.004
[18]. Kobayashi, K., Uomoto, T., & Shima, F. (1979,
September). Partial Replacement of Portland cement By
Ground Granulated Blast-Furnace Slag. In US-Japan
Science Seminar, San Francisco (p. 32).
[19]. Lukowski, P., & Salih, A. (2015). Durability of mortars
containing ground granulated blast-furnace slag in acid
and sulphate environment. Procedia Engineering, 108,
47-54. https://doi.org/10.1016/j.proeng.2015.06.118
[20]. Mani, K. U., Sathya, N., & Sakthivel, R. (2014).
International Journal of Modern Trends in Engineering and
Research Effect of replacement of River sand by M-sand
in high strength concrete.
[21]. Mehta, P. K., & Monteiro, P. J. (1993). Concrete:
Structure, Properties, and Materials. Prentice-Hall,
Englewood Cliffs.
[22]. Meusel, J. W., & Rose, J. H. (1983). Production of
granulated blast furnace slag at sparrows point, and the
workability and strength potential of concrete
incorporating the slag. Special Publication, 79, 867-890.
[23]. MuraliKrishnan, S., Kala, T. F., Asha, P., & Elavenil, S.
(2018). Properties of concrete using manufactured sand
as fine aggregate. International Journal of ChemTech
Research, 11(3), 94-100. https://doi.org/10.20902/IJCTR.2018.110337
[24]. Nawy, E. G. (1996). Fundamentals of High Strength
High Performance Concrete. Addison-Wesley Longman.
[25]. Neville, A. M. (1997). Properties of Concrete. Wiley,
New York.
[26]. Oner, A. D. N. A. N., & Akyuz, S. (2007). An
experimental study on optimum usage of GGBS for the
compressive strength of concrete. Cement and
Concrete Composites, 29(6), 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
[27]. Ozturan, T., & Çeçen, C. (1997). Effect of coarse
aggregate type on mechanical properties of concretes
with different strengths. Cement and Concrete Research,
27(2), 165-170. https://doi.org/10.1016/S0008-8846(97)00006-9
[28]. Pofale, A. D., & Kulkarni, S. S. (1998). Comparative
study of strength properties of concrete mixes with natural
sand replaced fully or partially by crushed stone powder
(Basalt) from aggregate crushing plant waste. In National
Seminar on Advances in Special Concretes, Indian
Concrete Institute, Banglore, India (pp. 227-240).
[29]. Raman, S. N., Ngo, T., Mendis, P., & Mahmud, H. B.
(2011). High-strength rice husk ash concrete
incorporating quarry dust as a partial substitute for sand.
Construction and Building Materials, 25(7), 3123-3130.
https://doi.org/10.1016/j.conbuildmat.2010.12.026
[30]. Rasiah, A. R. (1983). High strength concrete for
developing countries. In Proceedings of the First
International Conference on Concrete Technology in
Developing Countries.
[31]. Shah, S., & Ahmad, S. (1994). High Performance
Concretes and Applications. Edward Arnold, England.
[32]. Shanmugapriya, T., & Uma, R. N. (2012).
Optimization of partial replacement of M-sand by natural
sand in high performance concrete with silica fume.
International Journal of Engineering Sciences &
Emerging Technologies, 2(2), 73-80.
[33]. Shukla, M., & Sachan, A. K. (2000). Stone dustenvironmentally
hazardous waste: Its utilization in building
construction, materials and machines for construction.
New Age International (P) Limited Publishers, (pp. 77-81).
[34]. Singh, S., Nande, N., Bansal, P., & Nagar, R. (2017).
Experimental investigation of sustainable concrete made
with granite industry by-product. Journal of Materials in
Civil Engineering, 29(6), 04017017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001862
[35]. Soroka, I., & Setter, N. (1977). The effect of fillers on
strength of cement mortars. Cement and Concrete
Research, 7(4), 449-456. https://doi.org/10.1016/0008-8846(77)90073-4
[36]. Ujhelyi, J. E., & Ibrahim, A. J. (1991). Hot weather
concreting with hydraulic additives. Cement and
Concrete Research, 21(2-3), 345-354. https://doi.org/10.1016/0008-8846(91)90015-A
[37]. Vijayalakshmi, M., & Sekar, A. S. S. (2013). Strength
and durability properties of concrete made with granite
industry waste. Construction and Building Materials, 46, 1-7. https://doi.org/10.1016/j.conbuildmat.2013.04.018
[38]. Wang, D., & Chen, Z. (1997). On predicting
compressive strengths of mortars with ternary blends of
cement, GGBFS and fly ash. Cement and Concrete
Research, 27(4), 487-493. https://doi.org/10.1016/S0008-8846(97)00039-2
[39]. Zhou, F. P., Lydon, F. D., & Barr, B. I. G. (1995). Effect of
coarse aggregate on elastic modulus and compressive
strength of high performance concrete. Cement and
Concrete Research, 25(1), 177-186. https://doi.org/10.1016/0008-8846(94)00125-I