References
[1]. Behshad, A., & Ghasemi, M. R. (2013). Isogeometricbased
modeling and analysis of laminated composite
plates under transverse loading. Journal of Solid
Mechanics, 5(4), 380-390.
[2]. Behshad, A., & Ghasemi, M. R. (2014). Nurbs-igabased
modelling: Analysis and optimization of laminated
plates. Tehnički Vjesnik, 21(4), 789-797.
[3]. Bendsøe, M. P., & Kikuchi, N. (1988). Generating
optimal topologies in structural design using a
homogenization method. Computer Methods in Applied
Mechanics and Engineering, 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
[4]. Benson, D. J., Bazilevs, Y., Hsu, M. C., & Hughes, T.
(2011). A large deformation, rotation-free, isogeometric
shell. Computer Methods in Applied Mechanics and
Engineering, 200(13-16), 1367-1378. https://doi.org/10.1016/j.cma.2010.12.003
[5]. Camp, C. V., Pezeshk, S., & Hansson, H. (2003).
Flexural design of reinforced concrete frames using a
genetic algorithm. Journal of Structural Engineering,
129(1), 105-115. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(105)
[6]. Chandrasekhar, K. N. V. Sahithi, N. S. S., & Rao, M.
(2017). A Detailed Stepwise Procedure to Perform
Isogeometric Analysis of a Two Dimensional Continuum
Plate Structure-II. Journal of Aerospace Engineering &
Technology, 7(3), 19–37.
[7]. Chandrasekhar, K. N. V., Bhikshma, V., & Reddy, K. U.
B. (2022). Topology optimisation of laminated composite
shellsusing Optimality Criteria. Journal of Applied and
Computational Mechanics, 8(2), 405-415. https://doi.org/10.22055/JACM.2019.31296.1858
[8]. Cottrell, J. A., Hughes, T. J., & Bazilevs, Y. (2009).
Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons.
[9]. Gao, J., Gao, L., Luo, Z., & Li, P. (2019). Isogeometric
topology optimization for continuum structures using
density distribution function. International Journal for
Numerical Methods in Engineering, 119(10), 991-1017.
https://doi.org/10.1002/nme.6081
[10]. Gebremedhen, H. S., Woldemicahel, D. E., &
Hashim, F. M. (2019). Three-dimensional stress-based
topology optimization using SIMP method. International
Journal for Simulation and Multidisciplinary Design
Optimization, 10. https://doi.org/10.1051/smdo/2019005
[11]. Hassani, B., Khanzadi, M., & Tavakkoli, S. M. (2012).
An isogeometrical approach to structural topology
optimization by optimality criteria. Structural and
Multidisciplinar y Optimization, 45(2), 223-233.
https://doi.org/10.1007/s00158-011-0680-5
[12]. Hoang, C. T., Rabczuk, T., & Nguyen-Xuan, H. (2013).
A rotation-free isogeometric analysis for composite
sandwich thin plates. International Journal of Composite
Materials, 3(6A), 10-18.
[13]. Hughes, T. J., Cottrell, J. A., & Bazilevs, Y. (2005).
Isogeometric analysis: CAD, finite elements, NURBS, exact
geometry and mesh refinement. Computer Methods in
Applied Mechanics and Engineering, 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
[14]. Hughes, T. J., Reali, A., & Sangalli, G. (2010). Efficient
quadrature for NURBS-based isogeometric analysis.
Computer Methods in Applied Mechanics and
Engineering, 199(5-8), 301-313. https://doi.org/10.1016/j.cma.2008.12.004
[15]. Jeong, S. H., Park, S. H., Choi, D. H., & Yoon, G. H.
(2012). Topology optimization considering static failure
theories for ductile and brittle materials. Computers &
structures, 110, 116-132. https://doi.org/10.1016/j.compstruc.2012.07.007
[16]. Kant, T., & Swaminathan, K. (2001). Analytical
solutions for free vibration of laminated composite and
sandwich plates based on a higher-order refined theory.
Composite Structures, 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
[17]. Kant, T., & Swaminathan, K. (2002). Analytical solutions for the static analysis of laminated composite
and sandwich plates based on a higher order refined
theory. Composite Structures, 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
[18]. Kazemi, H. S., Tavakkoli, S. M., & Naderi, R. (2016).
Isogeometric topology optimization of structures
considering weight minimization and local stress
constraints. International Journal of Optimization in Civil
Engineering, 6(2), 303-317.
[19]. Khani, A., Abdalla, M. M., & Gürdal, Z. (2012).
Circumferential stiffness tailoring of general cross section
cylinders for maximum buckling load with strength
constraints. Composite Structures, 94(9), 2851-2860.
https://doi.org/10.1016/j.compstruct.2012.04.018
[20]. Liu, H., Yang, D., Hao, P., & Zhu, X. (2018).
Isogeometric analysis based topology optimization
design with global stress constraint. Computer Methods in
Applied Mechanics and Engineering, 342, 625-652.
https://doi.org/10.1016/j.cma.2018.08.013
[21]. Luo, Y., & Kang, Z. (2012). Topology optimization of
continuum structures with Drucker–Prager yield stress
constraints. Computers & Structures, 90, 65-75.
https://doi.org/10.1016/j.compstruc.2011.10.008
[22]. Nguyen, H. X., Atroshchenko, E., Nguyen-Xuan, H., &
Vo, T. P. (2017). Geometrically nonlinear isogeometric
analysis of functionally graded microplates with the
modified couple stress theory. Computers & Structures,
193, 110-127. https://doi.org/10.1016/j.compstruc.2017.07.017
[23]. Nguyen-Van, H., Mai-Duy, N., Karunasena, W., &
Tran-Cong, T. (2011). Buckling and vibration analysis of
laminated composite plate/shell structures via a
smoothed quadrilateral flat shell element with in-plane
rotations. Computers & Structures, 89(7-8), 612-625.
https://doi.org/10.1016/j.compstruc.2011.01.005
[24]. Panahandeh-Shahraki, D., & Mirdamadi, H. R.
(2014). Shell–tensionless foundation interaction and
nonlinear thermoelastic stability analysis of laminated
composite cylindrical panels. Acta Mechanica, 225(1),
131-149.https://doi.org/10.1007/s00707-013-0943-x
[25]. Ram, K. S., & Sinha, P. K. (1991). Hygrothermal effects on the bending characteristics of laminated composite
plates. Computers & Structures, 40(4), 1009-1015.
https://doi.org/10.1016/0045-7949(91)90332-G
[26]. Sahithi, N. S. S., & Chandrasekhar, K. N. V. (2019).
Isogeometric topology optimization of continuum
structures using an evolutionary algorithm. Journal of
Applied and Computational Mechanics, 5(2), 414-440.
https://doi.org/10.22055/JACM.2018.26398.1330
[27]. Somireddy, M., & Rajagopal, A. (2014). Meshless
natural neighbor Galerkin method for the bending and
vibration analysis of composite plates. Composite
Structures, 111, 138-146. https://doi.org/10.1016/j.compstruct.2013.12.023
[28]. Tiwari, N. (2022). Introduction to Composites. Indian Institutes of Technology, Kanpur, National Programme on
Technology Enhanced Learning.
[29]. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.
A., Rabczuk, T., Bui, T. Q., & Bordas, S. P. (2013). NURBSbased
finite element analysis of functionally graded
plates: static bending, vibration, buckling and flutter.
Composite Structures, 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008
[30]. Wang, X., Zhu, X., & Hu, P. (2015). Isogeometric finite
element method for buckling analysis of generally
laminated composite beams with different boundary
conditions. International Journal of Mechanical Sciences,
104, 190-199. https://doi.org/10.1016/j.ijmecsci.2015.10.008