References
[1]. Bentz, D. P., Stutzman, P. E., & Zunino, F. (2017). Low- temperature curing strength enhancement in cementbased
materials containing limestone powder. Materials
and Structures, 50(3), 1-14. https://doi.org/10.1617/s11527-017-1042-6
[2]. Bonavetti, V. L., & Irassar, E. F. (1994). The effect of
stone dust content in sand. Cement and Concrete
Research, 24(3), 580-590. https://doi.org/10.1016/0008-8846(94)90147-3
[3]. Celik, T., & Marar, K. (1996). Effects of crushed stone
dust on some properties of concrete. Cement and
Concrete Research, 26(7), 1121-1130. https://doi.org/10.1016/0008-8846(96)00078-6
[4]. Cheruiyot, J., Abuodha, S. O., & Kabubo, C. (2014).
Use of stone dust in the design of high performance
concrete. Open Journal of Civil Engineering, 4(3), 229-239. https://doi.org/10.4236/ojce.2014.43020
[5]. Cortes, D. D., Kim, H. K., Palomino, A. M., &
Santamarina, J. C. (2008). Rheological and mechanical
properties of mortars prepared with natural and
manufactured sands. Cement and Concrete Research,
38(10), 1142-1147. https://doi.org/10.1016/j.cemconres.2008.03.020
[6]. Cui, H. Z., Lo, T. Y., & Xing, F. (2010). Properties of selfcompacting
lightweight concrete. Materials Research
Innovations, 14(5), 392-396. https://doi.org/10.1179/143307510X12820854748953
[7]. Donza, H., Cabrera, O., & Irassar, E. F. (2002). Highstrength
concrete with different fine aggregate. Cement
and Concrete Research, 32(11), 1755-1761. https://doi.org/10.1016/S0008-8846(02)00860-8
[8]. Febin, G. K., Abhirami, A., Vineetha, A. K., Manisha, V.,
Ramkrishnan, R., Sathyan, D., & Mini, K. M. (2019).
Strength and durability properties of quarry dust powder
incorporated concrete blocks. Construction and Building
Materials, 228, 116793. https://doi.org/10.1016/j.conbuildmat.2019.116793
[9]. Jadhav, P. A., & Kulkarni, D. K. (2012). An experimental
investigation on the properties of concrete containing
manufactured sand. International Journal of Advanced
Engineering Technology, 3(2), 101-104.
[10]. Jinnai, H., Kuroiwa, S., Watanabe, S., Namiki, S., & Hayakawa, M. (2005). Development and construction
record on high-strength concrete with the compressive
strength exceeding 150 MPa. ACI Symposium
Publication, 228, 1045-1062.
[11]. Joudi-Bahri, I., Lecomte, A., Ouezdou, M. B., &
Achour, T. (2012). Use of limestone sands and fillers in
concrete without superplasticizer. Cement and Concrete
Composites, 34(6), 771-780. https://doi.org/10.1016/j.cemconcomp.2012.02.010
[12]. Kim, J. K., Lee, C. S., Park, C. K., & Eo, S. H. (1997). The
fracture characteristics of crushed limestone sand
concrete. Cement and Concrete Research, 27(11),
1719-1729. https://doi.org/10.1016/S0008-8846(97)00156-7
[13]. Li, B., Ke, G., & Zhou, M. (2011). Influence of
manufactured sand characteristics on strength and
abrasion resistance of pavement cement concrete.
Construction and Building Materials, 25(10), 3849-3853.
https://doi.org/10.1016/j.conbuildmat.2011.04.004
[14]. Li, B., Wang, J., & Zhou, M. (2009). Effect of limestone
fines content in manufactured sand on durability of lowand
high-strength concretes. Construction and Building
Materials, 23(8), 2846-2850. https://doi.org/10.1016/j.conbuildmat.2009.02.033
[15]. Li, F. L., Zeng, Y., & Li, C. Y. (2012). Evaluation of
relations among basic mechanical properties of
concrete with machine-made sand. Advanced Materials
Research, 418-420, 441-444. https://doi.org/10.4028/
www.scientific.net/AMR.418-420.441
[16]. Moon, G. D., Oh, S., Jung, S. H., & Choi, Y. C. (2017).
Effects of the fineness of limestone powder and cement
on the hydration and strength development of PLC
concrete. Construction and Building Materials, 135, 129-136. https://doi.org/10.1016/j.conbuildmat.2016.12.189
[17]. Nanthagopalan, P., & Santhanam, M. (2011). Fresh
and hardened properties of self-compacting concrete
produced with manufactured sand. Cement and
Concrete Composites, 33(3), 353-358. https://doi.org/10.1016/j.cemconcomp.2010.11.005
[18]. Poitevin, P. (1999). Limestone aggregate concrete, usefulness and durability. Cement and Concrete
Composites, 21(2), 89-97. https://doi.org/10.1016/S0958-9465(98)00047-X
[19]. Rao, K. B., Desai, V. B., & Mohan, D. J. (2012).
Experimental investigations on mode II fracture of
concrete with crushed granite stone fine aggregate
replacing sand. Materials Research, 15, 41-50.
https://doi.org/10.1590/S1516-14392011005000093
[20]. Russell, H. G., Moreno, J., Anderson, A. R., Banning,
J. O., Cantor, I. G., Carrasquillo, R. L., Cook, J. E., ... &
Guennewig, T. G. (1997). State-of-the-art report on highstrength
concrete (ACI 363R-92). ACI Committee, Report
363.
[21]. Senthil, B., Selvarani, S., Saranya, M., Suganya, D., &
Suganya, P. R. (2015). Study of partial replacement of
sand with waste material from Attur granite and quarry
dust industries. In National Conference on Research
Advances in Communication, Computation, Electrical
Science and Structures (NCRACCESS-2015) (No. 50, p.
100).
[22]. Sherir, M. A., Hossain, K. M., &Lachemi, M. (2015).
Structural performance of polymer fiber reinforced
engineered cementitious composites subjected to static
and fatigue flexural loading. Polymers, 7(7), 1299-1330.
https://doi.org/10.3390/polym7071299
[23]. Tošić, N., Marinković, S., Dašić, T., & Stanić, M.
(2015). Multicriteria optimization of natural and recycled
aggregate concrete for structural use. Journal of Cleaner
Production, 87, 766-776. https://doi.org/10.1016/j.jclepro.2014.10.070
[24]. Xirouchakis, D., & Theodoropoulos, A. (2009).
Crushed limestone aggregates for concrete and
masonry: Results from tests according to EN 12620, EN
13043, EN 13242, and EN 13139 standards. In
Proceedings of the 16th Concrete Conference.
[25]. Zhao, S. B., Ding, X. X., & Li, C. Y. (2012). Bond-slip
relation of plain steel bar in concrete with machine-made
sand. Applied Mechanics and Materials, 238, 142-146.
https://doi.org/10.4028/www.scientific.net/AMM.238.142