References
[1]. Aitcin, P. C., & Neville, A. (1993). High-performance
concrete demystified. Concrete International, 15(1), 21-26.
[2]. Al-Akhras, N. M., Ababneh, A., & Alaraji, W. A. (2010).
Using burnt stone slurry in mortar mixes. Construction and
Building Materials, 24(12), 2658-2663. https://doi.org/10.1016/j.conbuildmat.2010.04.058
[3]. Almeida, N., Branco, F., & Santos, J. R. (2007).
Recycling of stone slurry in industrial activities: Application
to concrete mixtures. Building and Environment, 42(2), 810-819. https://doi.org/10.1016/j.buildenv.2005.09.018
[4]. Binici, H., Shah, T., Aksogan, O., & Kaplan, H. (2008).
Durability of concrete made with granite and marble as
recycle aggregates. Journal of Materials Processing
Technology, 208(1-3), 299-308. https://doi.org/10.1016/j.jmatprotec.2007.12.120
[5]. Brindley, G. W., & Nakahira, M. (1959). The kaoIinite
mullite reaction series: I, a survey of outstanding
problems. Journal of the American Ceramic Society,
42(7), 311-314. https://doi.org/10.1111/j.1151-2916.1959.tb14314.x
[6]. Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010).
Characterization of marble powder for its use in mortar
and concrete. Construction and Building Materials, 24(1),
113-117. https://doi.org/10.1016/j.conbuildmat.2009.08.013
[7]. Felixkala, T., & Partheeban, P. (2010). Granite powder
concrete. Indian Journal of Science and Technology,
3(3), 311-317. https://doi.org/10.17485/ijst/2010/v3i3.6
[8]. Jadhav, P. A., & Kulkarni, D. K. (2013). Effect of
replacement of natural sand by manufactured sand on
the properties of cement mortar. International Journal of
Civil and Structural Engineering, 3(3), 621-628. https://doi.org/10.6088/ijcser.2 201203013057
[9]. Kankam, C. K., Meisuh, B. K., Sossou, G., & Buabin, T.
K. (2017). Stress-strain characteristics of concrete
containing quarry rock dust as partial replacement of
sand. Case Studies in Construction Materials, 7, 66-72.
https://doi.org/10.1016/j.cscm.2017.06.004
[10]. Karaşahin, M., & Terzi, S. (2007). Evaluation of
marble waste dust in the mixture of asphaltic concrete.
Construction and Building Materials, 21(3), 616-620.
https://doi.org/10.1016/j.conbuildmat.2005.12.001
[11]. Mundra, S., Sindhi, P. R., Chandwani, V., Nagar, R., &
Agrawal, V. (2016). Crushed rock sand–An economical
and ecological alternative to natural sand to optimize
concrete mix. Perspectives in Science, 8, 345-347.
https://doi.org/10.1016/j.pisc.2016.04.070
[12]. Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and
calcined clays as pozzolans for concrete: A review.
Cement and Concrete Composites, 23(6), 441-454. https://doi.org/10.1016/S0958-9465(00)00092-5
[13]. Sankh, A. C., Biradar, P. M., Naghathan, S. J., &
Ishwargol, M. B. (2014, March). Recent trends in
replacement of natural sand with different alternatives. In
Proceedings of the International Conference on
Advances in Engineering and Technology (pp. 59-66).
[14]. Scrivener, K. L., & Kirkpatrick, R. J62008). Innovation
in use and research on cementitious material. Cement
and Concrete Research, 38(2), 128-136. https://doi.org/10.1016/j.cemconres.2007.09.025
[15]. Targan, Ş., Olgun, A. S. İ. M., Erdogan, Y., & Sevinc, V. (2003). Influence of natural pozzolan, colemanite ore
waste, bottom ash, and fly ash on the properties of
Portland cement. Cement and Concrete Research,
33(8), 1175-1182. https://doi.org/10.1016/S0008-8846(03)00025-5
[16]. Van den Heede, P., & De Belie, N. (2012).
Environmental impact and life cycle assessment (LCA) of
traditional and 'green' concretes: Literature review and
theoretical calculations. Cement and Concrete
Composites, 34(4), 431-442. https://doi.org/10.1016/j.cemconcomp.2012.01.004