Role and Selection Consideration of Metallic Biomaterial: A Study

Santosh Kumar*, Rakesh Kumar**
* Department of Mechanical Engineering, Chandigarh Group of Colleges, Mohali, Punjab, India.
** Department of Mechanical Engineering, Chandigarh University, Punjab, India.
Periodicity:October - December'2021
DOI : https://doi.org/10.26634/jms.9.3.18483

Abstract

Biomaterials plays a significant role in the biomedical sector (orthopedic implant) application to solve the problems related to material selection. The metals and alloys are widely used in a biomedical implants due to its key merits such as high mechanical properties, ease of manufacturing, reasonable biocompatibility, high fracture resistance, reliable long-term implant performance in major load-bearing cases, etc. When metallic materials are used in corrosive human body conditions, their degradation occurs, which is a major concern for biomedical engineers. Therefore, knowledge of the different types of biomaterials, their properties, problems and considerations for the choice of metallic biomaterial described in this study is very important for future researchers.

Keywords

Biomaterials, Classification, Properties, Applications, Selection Consideration, Corrosion, Standard.

How to Cite this Article?

Kumar, S., and Kumar, R. (2021). Role and Selection Consideration of Metallic Biomaterial: A Study. i-manager’s Journal on Material Science, 9(3), 13-29. https://doi.org/10.26634/jms.9.3.18483

References

[1]. Aksakal, B., Yildirim, Ö. S., & Gul, H. (2004). Metallurgical failure analysis of various implant materials used in orthopedic applications. Journal of Failure Analysis and Prevention, 4(3), 17-23. https://doi.org/10.1 007/s11668-996-0007-9
[2]. Alvarado, J., Maldonado, R., Marxuach, J., & Otero, R. (2003). Biomechanics of hip and knee prostheses. Applications of Engineering Mechanics in Medicine, 6-22.
[3]. Amel-Farzad, H., Peivandi, M. T., & Yusof-Sani, S. M. R. (2007). In-body corrosion fatigue failure of a stainless steel orthopaedic implant with a rare collection of different damage mechanisms. Engineering Failure Analysis, 14(7), 1205-1217. https://doi.org/10.1016%2Fj.engfailan al.2006.11.037
[4]. Bandyopadhyay, A., Shivaram, A., Isik, M., Avila, J. D., Dernell, W. S., & Bose, S. (2019). Additively manufactured calcium phosphate reinforced CoCrMo alloy: Biotribological and biocompatibility evaluation for loadbearing implants. Additive Manufacturing, 28, 312-324. https://doi.org/10.1016/j.addma.2019.04.020
[5]. Barrere, F., Layrolle, P., Van Blitterswijk, C. A., & De Groot, K. (1999). Biomimetic calcium phosphate coatings on Ti6Al4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3 . Bone, 25(2), 107S-111S. https://doi.org/10.1016/ 3 S8756-3282(99)00145-3
[6]. Beddoes, J., & Bucci, K. (1999). The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants. Journal of Materials Science: Materials in Medicine, 10(7), 389-394. https:// doi.org/10.1023/A:1008918929036
[7]. Bedi, T. S., Kumar, S., & Kumar, R. (2019). Corrosion performance of hydroxyapaite and hydroxyapaite/titania bond coating for biomedical applications. Materials Research Express, 7(1), 42-52.
[8]. Bio-Implants Market. (2017). Global Bio-Implants Market Worth $134.3 Billion by 2017. Markets and Markets. Retrieved from https://www.marketsandmarkets.com/ PressReleases/bio-implants.asp
[9]. Black, J. (1992). Biological Performance of Materials: Fundamentals of Biocompatibility (2nd ed.). Marcel Dekker, New York.
[10]. Blackwood, D. J. (2003). Biomaterials: past successes and future problems. Corrosion Reviews, 21(2- 3), 97-124. https://doi.org/10.1515/CORRREV.2003.2.2-3. 97
[11]. Boretos, J. W., Eden, M., & Fung, Y. C. (1985). Contemporary biomaterials: Material and host response, clinical applications, new technology and legal aspects. Journal of Biomechanical Engineering, 107(1), 1-87. https://doi.org/10.1115/1.3138526
[12]. Buford, A., & Goswami, T. (2004). Review of wear mechanisms in hip implants: Paper I–General. Materials & Design, 25(5), 385-393. https://doi.org/10.1016/j.matdes. 2003.11.010
[13]. Catauro, M., Papale, F., Sapio, L., & Naviglio, S. (2016). Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing. Materials Science and Engineering: C, 65, 188-193. https://doi.org/ 10.1016/j.msec.2016.03.110
[14]. Dehghanghadikolaei, A., & Fotovvati, B. (2019). Coating techniques for functional enhancement of metal implants for bone replacement: A review. Materials, 12(11), 1795. https://doi.org/10.3390/ma12 111795
[15]. Fadl-allah, S.A., Mohsen, Q., & El-Shenawy, N. S. (2011). Stainless Steel Implantation-Induced Changes in Surface Characteristics, Corrosion Resistance and Hematobiochemical Parameters of Male Rat, Journal of American Science, 7(1), 84-91.
[16]. Fraker, A.C. (1987). Corrosion of metallic implants and prosthesis devices. In ASTM Metals Handbook (9th ed.). Corrosion, Metals Park, OH: ASM International, 1324- 1335.
[17]. Frankel, G. S. (1998). Pitting corrosion of metals: a review of the critical factors. Journal of the Electrochemical Society, 145(6), 2186-2198.
[18]. Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Progress in Materials Science, 54(3), 397-425. https://doi.org/10.1016/j.pmat sci.2008.06.004
[19]. Hallab, N. J., & Jacobs, J. J. (2003). Orthopedic implant fretting corrosion. Corrosion Reviews, 21(2-3), 183-214. https://doi.org/10.1515/CORRREV.2003.21.2-3. 183
[20]. Hanawa, T. (2009). An overview of biofunctionalization of metals in Japan. Journal of The Royal Society Interface, 6(suppl_3), S361-S369. https://doi.org/10.1098/rsif.2008. 0427.focus
[21]. Harsimran, S., Santosh, K., & Rakesh, K. (2021). Overview of corrosion and its control: A critical review. Proceedings on Engineering, 3(1), 13-24. http://doi.org/ 10.24874/PES03.01.002
[22]. Hench, L. L. (1991). Bioceramics: from concept to clinic. Journal of the American Ceramic Society, 74(7), 1487-1510. https://doi.org/10.1111/j.1151-2916.1991.tb 07132.x
[23]. Hiromoto, S. (2008). Corrosion of metallic biomaterials in cell culture environments. The Electrochemical Society Interface, 17(2), 41-44.
[24]. Hoeppner, D. W., & Chandrasekaran, V. (1994). Fretting in orthopaedic implants: A review. Wear, 173(1-2), 189-197. https://doi.org/10.1016/0043-1648(94)90272-0
[25]. Ige, O. O., Umoru, L. E., Adeoye, M. O., Adetunji, A. R., Olorunniwo, O. E., & Akomolafe, I. I. (2009). Monitoring, control and prevention practices of biomaterials corrosion–An overview. Trends Biomaterials Artificial Organs, 23(2), 93-104.
[26]. Jacobs, J. J., Gilbert, J. L., & Urban, R. M. (1998). Current concepts review-corrosion of metal orthopaedic implants. The Journal of Bone and Joint Surgery, 80(2), 268-282.
[27]. Jafari, S., Harandi, S. E., & Raman, R. S. (2015). A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications. JOM, 67(5), 1143-1153. https://doi.org/10.1 007/s11837-015-1366-z
[28]. Julmi, S., Krüger, A. K., Waselau, A. C., Meyer- Lindenberg, A., Wriggers, P., Klose, C., & Maier, H. J. (2019). Processing and coating of open-pored absorbable magnesium-based bone implants. Materials Science and Engineering: C, 98, 1073-1086. https://doi. org/10.1016/j.msec.2018.12.125
[29]. Kamachimudali, U., Sridhar, T. M., & Raj, B. (2003). Corrosion of bio implants. Sadhana, 28(3), 601-637. https://doi.org/10.1007/BF02706450
[30]. Katz, J. L. (1980). Anisotropy of Young's modulus of bone. Nature, 283(5742), 106-107. https://doi.org/10.10 38/283106a0
[31]. Kruger, J. (1979). Fundamental aspects of the corrosion of metallic implants. In Corrosion and Degradation of Implant Materials. ASTM International, 107-127. https://doi.org/10.1520/STP35940S
[32]. Kumar, R., & Kumar, S. (2018a). Comparative Parabolic Rate Constant and Coating Properties of Nickel, Cobalt, Iron and Metal Oxide Based Coating: A Review. i-manager's Journal on Material Science, 6(1), 45-56. https://doi.org/10.26634/jms.6.1.14379
[33]. Kumar, R., & Kumar, S. (2018b). Thermal Spray Coating Process: A Study. International Journal of Engineering Science and Research Technology, 7 (3), 610-617.
[34]. Kumar, R., & Kumar, S. (2020). Trending applications of 3D printing: A study. Asian Journal of Engineering and Applied Technology, 9(1), 1-12. https://doi.org/10.26634/ jme.11.1.17627
[35]. Kumar, R., Kumar, M., & Chohan, J. S. (2021a). Material-specific properties and applications of additive manufacturing techniques: a comprehensive review. Bulletin of Materials Science, 44(3), 1-19. https://doi.org/ 10.1007/s12034-021-02364-y
[36]. Kumar, R., Kumar, M., & Chohan, J. S. (2021b). The role of additive manufacturing for biomedical applications: A critical review. Journal of Manufacturing Processes, 64, 828-850. https://doi.org/10.1016/j.jmapro. 2021.02.022
[37]. Kumar, R., Singh, R., & Kumar, S. (2018). Erosion and hot corrosion phenomena in thermal power plant and their preventive methods: A study. Asian Review of Mechanical Engineering, 7(1), 38-45.
[38]. Kumar, R., & Sharma, R. (2021). Trending applications and mechanical properties of 3D printing: A review. i-manager's Journal on Mechanical Engineering, 11(1), 22-39. https://doi.org/10.26634/jme.11.1.17627
[39]. Kumar, S., & Kumar, R. (2021). Gas dynamic cold spraying: A review on materials, parameters, applications and challenges. i-manager's Journal on Future Engineering and Technology, 16(2), 43-56. https://doi. org/10.26634/jfet.16.2.17624
[40]. Kumar, S., Handa, A., & Kumar, R. (2019). Overview of wire arc spray process: A review. A Journal of Composition Theory, 12(7), 900-907.
[41]. Kumar, S., Handa, A., Chawla, V., Grover, N. K., & Kumar, R. (2021c). Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance: A review. Surface Engineering, 1-28. https://doi.org/10.1080/02670844. 2021.1924506
[42]. Kumar, S., Kumar, R., Singh, S., Singh, S., Sidhu, H. S., & Handa, A. (2020a). The role of thermal spray coating to combat hot corrosion of boiler tubes: A study. Journal of Xidian University, 14(5), pp. 229-239. http://doi.org/10.3 7896/jxu14.5/024
[43]. Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., & Kim, K. H. (2020b). Nanotechnologybiomaterials for orthopaedic applications: Recent advances and future prospects. Materials Science and Engineering: C, 106, 110154. https://doi.org/10.1016/j. msec.2019.110154
[44]. Kumazawa, R., Watari, F., Takashi, N., Tanimura, Y., Uo, M., & Totsuka, Y. (2002). Effects of Ti ions and particles on neutrophil function and morphology. Biomaterials, 23(17), 3757-3764. https://doi.org/10.1016/S0142-9612 (02)00115-1
[45]. Kurtz, S., Ong, K., Lau, E., Mowat, F., & Halpern, M. (2007). Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. The Journal of Bone & Joint Surgery, 89(4), 780-785. https:// doi.org/10.2106/JBJS.F.00222
[46]. Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—A materials science perspective. Biomaterials, 19(18), 1621-1639. https://doi.org/10.1016/ S0142-9612(97)00146-4
[47]. Manivasagam, G., Dhinasekaran, D., Rajamanickam, A. (2010). Biomedical implants: Corrosion and its prevention-A review. Recent Patents Corrosion Science, 2, 40–54.
[48]. Menini, R., Dion, M. J., So, S. K., Gauthier, M., & Lefebvre, L. P. (2005). Sur face and corrosion electrochemical characterization of titanium foams for implant applications. Journal of the Electrochemical Society, 153(1), B13-B21.
[49]. Mueller, H. J., & Greener, E. H. (1970). Polarization studies of surgical materials in Ringer's solution. Journal of Biomedical Materials Research, 4(1), 29-41. https://doi. org/10.1002/jbm.820040105
[50]. Nasab, M. B., Hassan, M. R., & Sahari, B. B. (2010). Metallic biomaterials of knee and hip-A review. Trends in Biomaterials & Artificial Organs, 24(1), 69-82.
[51]. Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445-455. https:// doi.org/10.1016/j.stam.2003.09.002
[52]. Niinomi, M. (2007). Fatigue characteristics of metallic biomaterials. International Journal of Fatigue, 29(6), 992-1000.
[53]. Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. https://doi.org/10.1016/j.jmbbm.2007.07.001
[54]. Palanisamy, G. (2019). Corrosion inhibitors. Intech Open, 1-24. https://doi.org/10.5772/intechopen.80542
[55]. Park, J. B., & Kim, Y. K. (2002). Metallic biomaterials. In J. B. Park, & J. D Bronzino, (Eds.), Biomaterials: Principles and Applications, (pp. 37-39). CRC Press.
[56]. Patel, N. R., & Gohil, P. P. (2012). A review on biomaterials: scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2(4), 91-101.
[57]. Patterson, S. P., Daffner, R. H., & Gallo, R. A. (2005). Electrochemical corrosion of metal implants. American Journal of Roentgenology, 184(4), 1219-1222. https://doi. org/10.2214/ajr.184.4.01841219
[58]. Pawelec, K. M., White, A. A., & Best, S. M. (2019). Properties and characterization of bone repair materials. In Kendell M. Pawelec, Josep A. Planell (Eds.), Bone Repair Biomaterials (pp. 65-102). Woodhead Publishing. https:// doi.org/10.1016/B978-0-08-102451-5.00004-4
[59]. Perrotti, V., Piattelli, A., Quaranta A. Gómez-Moreno, G., & Lezzi, G. (2017). Biocompatibility of dental biomaterial. In Shelton, R. (Ed.), Biocompatibility of Dental Biomaterial. Woodhead Publishing.
[60]. Ramsden, J. J., Allen, D. M., Stephenson, D. J., Alcock, J. R., Peggs, G. N., Fuller, G., & Goch, G. (2007). The design and manufacture of biomedical surfaces. CIRP Annals, 56(2), 687-711. https://doi.org/10.1016/j. cirp.2007.10.001
[61]. Reclaru, L., Lerf, R., Eschler, P. Y., & Meyer, J. M. (2001). Corrosion behavior of a welded stainless-steel orthopedic implant. Biomaterials, 22(3), 269-279. https:// doi.org/10.1016/S0142-9612(00)00185-X
[62]. Roychowdhury, A., Gupta, S., Vidyasagara, P. E. C., & Pal, S. (2004). Wear studies of frequently used implant materials. Trends in Biomaterials and Artificial Organs, 17(2), 135-141.
[63]. Sawada, T., Schille, C., Almadani, A., & Geis- Gerstorfer, J. (2017). Fretting corrosion behavior of experimental Ti-20Cr compared to titanium. Materials, 10(2), 194. https://doi.org/10.3390/ma10020194
[64]. Sidhu, H.S., Kumar, S., Kumar, R., & Singh, S. (2020). Experimental investigation on design and analysis of prosthetic leg. Journal of Xidian University, 14(5), 4486- 4501. https://doi.org/10.37896/jxu14.5/491.
[65]. Singh, G., Kumar, S., & Kumar, R. (2020). Comparative study of hot corrosion behavior of thermal sprayed alumina and titanium oxide reinforced alumina coatings on boiler steel. Materials Research Express, 7(2). https://doi.org/10.1088/2053-1591/ab6e7e
[66]. Singh, R., & Dahotre, N. B. (2007). Corrosion degradation and prevention by surface modification of biometallic materials. Journal of Materials Science: Materials in Medicine, 18(5), 725-751. https://doi.org/10. 1007/s10856-006-0016-y
[67]. Sivakumar, M., Dhanadurai, K. S. K., Rajeswari, S., & Thulasiraman, V. (1995). Failures in stainless steel orthopaedic implant devices: A survey. Journal of Materials Science Letters, 14(5), 351-354. https://doi.org/ 10.1007/BF00592147
[68]. Slonaker, M., & Goswami, T. (2004). Review of wear mechanisms in hip implants: Paper II–ceramics IG004712. Materials & Design, 25(5), 395-405. https://doi. org/10.1016/j.matdes.2003.11.011
[69]. Songür, M., Çelikkan, H., Gökmeşe, F., Şimşek, S. A., Altun, N. Ş., & Aksu, M. L. (2009). Electrochemical corrosion properties of metal alloys used in orthopaedic implants. Journal of Applied Electrochemistry, 39(8), 1259-1265. https://doi.org/10.1007/s10800-009-9793-6
[70]. Sridhar, T. M., Eliaz, N., Mudali, U. K., & Raj, B. (2002). Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants. Corrosion Reviews, 20(4-5), 255-294. https://doi.org/10.1515/CORR REV.2002.20.4-5.255
[71]. Sygnatowicz, M., & Tiwari, A. (2009). Controlled synthesis of hydroxyapatite-based coatings for biomedical application. Materials Science and Engineering: C, 29(3), 1071-1076. https://doi.org/10.101 6/j.msec.2008.08.036
[72]. Teoh, S. H. (2000). Fatigue of biomaterials: A review. International Journal of Fatigue, 22(10), 825-837. https:// doi.org/10.1016/S0142-1123(00)00052-9
[73]. Timonova, M. A. (1962). Intercrystalline Corrosion and Corrosion of Metals Under Stress. New York: Consultants Bureau.
[74]. Tudose, A. E., Demetrescu, I., Golgovici, F., & Fulger, M. (2021). Oxidation behavior of an austenitic steel (Fe, Cr and Ni), the 310 H, in a deaerated supercritical water static system. Metals, 11(4), 571. https://doi.org/10.3390/ met11040571
[75]. Upadhyay, D., Panchal, M. A., Dubey, R. S., & Srivastava, V. K. (2006). Corrosion of alloys used in dentistry: A review. Materials Science and Engineering: A, 432(1-2), 1-11. https://doi.org/10.1016/j.msea.2006.05. 003
[76]. Virtanen, S., Milošev, I., Gomez-Barrena, E., Trebše, R., Salo, J., & Konttinen, Y. T. (2008). Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomaterialia, 4(3), 468-476. https:// doi.org/10.1016/j.actbio.2007.12.003
[77]. Walkowiak, B., Jakubowski, W., Okroj, W., Kochmanska, V., & Kroliczak, V. (2001, June). Interaction of body fluids with carbon surfaces. In 3rd International Conference'Novel Applications of Wide Bandgap Layers' Abstract Book (pp. 75-76). IEEE. https://doi.org/10.1109/ WBL.2001.946551
[78]. Wang, M. (2003). Developing novel biomaterials for new challenges. In Materials Science and Technology in Engineering Conference-Now, New and Next, The Hong Kong Institution of Engineers, Hong Kong.
[79]. Wang, Z., Cong, Y., Zhang, T., Shao, Y., & Meng, G. (2011). Study on the crevice corrosion behavior of 316L stainless steel used on marine gas turbine inlet filters by stochastic methods. International Journal of Electrochemical Science, 6, 5521-5538.
[80]. Williams, D. F. (1988). Consensus and definitions in biomaterials. In C. de Putter, G. L. de Lange, K. de Groot, A. J. C. Lee. (Ed.), Advances in Biomaterials (pp. 11–16), Elsevier Science Publishers, Amsterdam.
[81]. Williams, R. L., Brown, S. A., & Merritt, K. (1988). Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials, 9(2), 181- 186. https://doi.org/10.1016/0142-9612(88)90119-6
[82]. Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5-6), 63- 72. https://doi.org/10.1016/j.cossms.2009.04.001
[83]. Zlotnik, S., Maltez-da Costa, M., Barroca, N., Hortigüela, M. J., Singh, M. K., Fernandes, M. H. V., & Vilarinho, P. M. (2019). Functionalized-ferroelectriccoating- driven enhanced biomineralization and proteinconformation on metallic implants. Journal of Materials Chemistry B, 7(13), 2177-2189. https://doi.org/10.1039/ C8TB02777C
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.