References
[1]. Agrawal, U. S., Wanjari, S. P., & Naresh, D. N. (2017).
Characteristic study of geopolymer fly ash sand as a
replacement to natural river sand. Construction and
Building Materials, 150, 681-688. https://doi.org/10.1016/j.conbuildmat.2017.06.029
[2]. Arularasi, V., Thamilselvi, P., Avudaiappan, S.,
Saavedra Flores, E. I., Amran, M., Fediuk, R., & Karelina,
M. (2021). Rheological behavior and strength
characteristics of cement paste and mortar with fly ash
and GGBS admixtures. Sustainability, 13(17), 9600. https://doi.org/10.3390/su13179600
[3]. Arulmoly, B., Konthesingha, C., & Nanayakkara, A.
(2021). Performance evaluation of cement mortar
produced with manufactured sand and offshore sand as
alternatives for river sand. Construction and Building
Materials, 297, 123784. https://doi.org/10.1016/j.conbuildmat.2021.123784
[4]. Babu, K. G., & Kumar, V. S. R. (2000). Efficiency of
GGBS in concrete. Cement and Concrete Research,
30(7), 1031-1036, https://doi.org/10.1016/S0008-8846(00)00271-4
[5]. Colangelo, F., Messina, F., Di Palma, L., & Cioffi, R.
(2017). Recycling of non-metallic automotive shredder
residues and coal fly-ash in cold-bonded aggregates for
sustainable concrete. Composites Part B: Engineering,
116, 46-52. https://doi.org/10.1016/j.compositesb.2017.02.004
[6]. Das, S., Patra, R. K., & Mukharjee, B. B. (2021). Feasibility study of utilisation of ferrochrome slag as fine
aggregate and rice husk ash as cement replacement for
developing sustainable concrete. Innovative Infrastructure
Solutions, 6(2), 1-18. https://doi.org/10.100 7/s41062-021-00461-9
[7]. Gesoğlu, M., Güneyisi, E., Alzeebaree, R., &
Mermerdaş, K. (2013). Effect of silica fume and steel fiber
on the mechanical properties of the concretes produced
with cold bonded fly ash aggregates. Construction and
Building Materials, 40, 982-990. https://doi.org/10.1016/j.conbuildmat.2012.11.074
[8]. Gnanadurai, L. T., Renganathan, N. T., & Selvaraj, C.
G. (2021). Synthesis and characterization of synthetic
sand by geopolymerization of industrial wastes (fly ash
and GGBS) replacing the natural river sand.
Environmental Science and Pollution Research, 28(40),
56294-56304. https://doi.org/10.1007/s11356-021-14223-8
[9]. Gunasekara, C., Setunge, S., Law, D. W., Willis, N., &
Burt, T. (2018). Engineering properties of geopolymer
aggregate concrete. Journal of Materials in Civil
Engineering, 30(11), 04018299. https://doi.org/10.1061/(asce)mt.1943-5533.0002501
[10]. Güneyisi, E., Gesoğlu, M., Pürsünlü, Ö., &
Mermerdaş, K. (2013). Durability aspect of concretes
composed of cold bonded and sintered fly ash
lightweight aggregates. Composites Part B: Engineering,
53, 258-266. https://doi.org/10.1016/j.compositesb.2013.04.070
[11]. Gupta, L. K., & Vyas, A. K. (2018). Impact on
mechanical properties of cement sand mortar
containing waste granite powder. Construction and
Building Materials, 191, 155-164. https://doi.org/10.1016/j.conbuildmat.2018.09.203
[12]. Justo-Reinoso, I., Srubar III, W. V., Caicedo-Ramirez,
A., & Hernandez, M. T. (2018). Fine aggregate substitution
by granular activated carbon can improve physical and
mechanical properties of cement mortars. Construction
and Building Materials, 164, 750-759. https://doi.org/10.1016/j.conbuildmat.2017.12.181
[13]. Kabeer, K. S. A., & Vyas, A. K. (2019). Experimental investigation on utilization of dried marble slurry as fine
aggregate in lean masonry mortars. Journal of Building
Engineering, 23, 185-192. https://doi.org/10.1016/j.jobe.2019.01.034
[14]. Kashyap, A. M. N., Varalakshmi, P., Rao, T. C., &
Sur yanarayana, S. (2018). Influence of alkali
concentration on strength characteristic of GGBS based
geopolymer mortar. American Journal of Engineering
Research (AJER), 7(4), 9-12.
[15]. Kim, J. S., Lee, J. Y., Kim, Y. H., Kim, D., Kim, J., & Han,
J. G. (2022a). Evaluating the eco-compatibility of mortars
with feldspar-based fine aggregate. Case Studies in
Construction Materials, 16, e00781. https://doi.org/10.1016/j.cscm.2021.e00781
[16]. Kim, M. J., Hwang, W. I., & Cho, W. J. (2022b). The
influence of alkali activators on the properties of ternary
blended cement incorporated with ferronickel slag.
Construction and Building Materials, 318, 126174. https://doi.org/10.1016/j.conbuildmat.2021.126174
[17]. Kumar, K. P., & Radhakrishna. (2020). Workability
strength and elastic properties of cement mortar with
pond ash as fine aggregates. Materials Today:
Proceedings, 24, 1626-1633. https://doi.org/10.1016/j.matpr.2020.04.484
[18]. Kumar, V. P., Gunasekaran, K., & Shyamala, T. (2019).
Characterization study on coconut shell concrete with
partial replacement of cement by GGBS. Journal of
Building Engineering, 26, 100830. https://doi.org/10.1016/j.jobe.2019.100830
[19]. Lee, K. H., Yang, K. H., Mun, J. H., & Van Tuan, N.
(2019). Effect of sand content on the workability and
mechanical properties of concrete using bottom ash and
dredged soil-based artificial lightweight aggregates.
International Journal of Concrete Structures and
Materials, 13(1), 1-13. https://doi.org/10.1186/s40069-018-0306-z
[20]. Liu, Z., Takasu, K., Koyamada, H., & Suyama, H.
(2022). A study on engineering properties and
environmental impact of sustainable concrete with fly ash
or GGBS. Construction and Building Materials, 316,
125776. https://doi.org/10.1016/j.conbuildmat.2021. 125776
[21]. Malipeddi, R., & Adiseshu, S. (2021). Study of
dissolution parameter of ground granulated blast furnace
slag as cement replacement on mechanical properties
of mortar. Materials Today: Proceedings, 44, 642-650.
https://doi.org/10.1016/j.matpr.2020.10.605
[22]. Mundra, S., Agrawal, V., & Nagar, R. (2020).
Sandstone cutting waste as partial replacement of fine
aggregates in concrete: A mechanical strength
perspective. Journal of Building Engineering, 32, 101534.
https://doi.org/10.1016/j.jobe.2020.101534
[23]. Nadesan, M. S., & Dinakar, P. (2017). Structural
concrete using sintered flyash lightweight aggregate: A
review. Construction and Building Materials, 154, 928-
944. https://doi.org/10.1016/j.conbuildmat.2017.08.005
[24]. Narattha, C., & Chaipanich, A. (2018). Phase
characterizations, physical properties and strength of
environment-friendly cold-bonded fly ash lightweight
aggregates. Journal of Cleaner Production, 171, 1094-1100.
[25]. Narayanan, A., & Shanmugasundaram, P. (2017).
An experimental investigation on flyash-based
geopolymer mortar under different curing regime for
thermal analysis. Energy and Buildings, 138, 539-545.
https://doi.org/10.1016/j.enbuild.2016.12.079
[26]. Priyadharshini, P., Ramamurthy, K., & Robinson, R. G.
(2019). Influence of temperature and duration of thermal
treatment on properties of excavated soil as fine
aggregate in cement mortar. Journal of Materials in Civil
Engineering, 31(8), 04019137. https://doi.org/10.1061/(asce)mt.1943-5533.0002759
[27]. Qian, L. P., Wang, Y. S., Alrefaei, Y., & Dai, J. G. (2020).
Experimental study on full-volume fly ash geopolymer
mortars: Sintered fly ash versus sand as fine aggregates.
Journal of Cleaner Production, 263, 121445. https://doi.org/10.1016/j.jclepro.2020.121445
[28]. Ramamurthy, K., & Harikrishnan, K. I. (2006).
Influence of binders on properties of sintered fly ash
aggregate. Cement and Concrete Composites, 28(1),
33-38. https://doi.org/10.1016/j.cemconcomp.2005.06.005
[29]. Rao, S. M., & Acharya, I. P. (2014). Synthesis and
characterization of fly ash geopolymer sand. Journal of
Materials in Civil Engineering, 26(5), 912-917. https://doi.org/10.1061/(asce)mt.1943-5533.0000880
[30]. Reddy, B. V. (2012). Suitability of manufactured Sand
(M-Sand) as fine aggregate in mortars and concrete.
[Project Report]. Department of Civil Engineering, Indian
Institute of Science, Bangalore, Karnataka, India..
[31]. Salla, S. R., Modhera, C. D., & Babu, U. R. (2021). An
experimental study on various industrial wastes in
concrete for sustainable construction. Journal of
Advanced Concrete Technology, 19(2), 133-148. https://doi.org/10.3151/jact.19.133
[32]. Samantasinghar, S., & Singh, S. P. (2019). Fresh and
hardened properties of fly ash–slag blended geopolymer
paste and mortar. International Journal of Concrete
Structures and Materials, 13(1), 1-12, https://doi.org/10.1186/s40069-019-0360-1
[33]. Sang, N. T., & Khoa, N. T. (2020). Experimental study
on effect of ground granulated blast furnace slag of
strength and durability of sand concrete. In CIGOS 2019,
Innovation for Sustainable Infrastructure (pp. 409-414).
Springer, Singapore. https://doi.org/10.1007/978-981-15-0802-8_63
[34]. Saranya, P., Nagarajan, P., & Shashikala, A. P. (2018,
March). Eco-friendly GGBS concrete: A state-of-the-art
review. In IOP Conference Series: Materials Science and
Engineering, 330, 012057. https://doi.org/10.1088/1757-899X/330/1/012057
[35]. Satpathy, H. P., Patel, S. K., & Nayak, A. N. (2019).
Development of sustainable lightweight concrete using
fly ash cenosphere and sintered fly ash aggregate.
Construction and Building Materials, 202, 636-655.
https://doi.org/10.1016/j.conbuildmat.2019.01.034
[36]. Sekine, E., & Sunaga, M. (1991). Study on utilization
of fly ash as embankment materials in railway. Quarterly
Report of the Railway Technical Research Institute (RTRI)
(pp. 244–250).
[37]. Shi, M., Ling, T. C., Gan, B., & Guo, M. Z. (2019).
Turning concrete waste powder into carbonated artificial
aggregates. Construction and Building Materials, 199, 178-184. https://doi.org/10.1016/j.conbuildmat.2018.12.021
[38]. Shivaprasad, K. N., & Das, B. B. (2017). Influence of
alkali binder dosage on the efficiency of pelletization of
aggregates from iron ore tailing and fly ash. International
Journal of Engineering Research in Mechanical and Civil
Engineering, 2(3), 388-392.
[39]. Shivaprasad, K. N., & Das, B. B. (2018).
Determination of optimized geopolymerization factors on
the properties of pelletized fly ash aggregates.
Construction and Building Materials, 163, 428-437.
https://doi.org/10.1016/j.conbuildmat.2017.12.038
[40]. Singh, G., Das, S., Ahmed, A. A., Saha, S., &
Karmakar, S. (2015). Study of granulated blast furnace
slag as fine aggregates in concrete for sustainable
infrastructure. Procedia-Social and Behavioral Sciences,
195, 2272-2279. https://doi.org/10.1016/j.sbspro.2015.06.316
[41]. Singh, P., & Singla, R. K. (2015). Utilization of waste
ceramic tiles as coarse aggregate in concrete. Journal of
Multidisciplinary Engineering Science and Technology,
2(11), 3294-3300.
[42]. Suresh, G. V., Reddy, P. P. K., & Karthikeyan, J. (2016).
Effect of GGBS and Fly ash aggregates on properties of
geopolymer concrete. Journal on Structural Engineering,
43(5), 436–444.
[43]. Their, J. M., & Özakça, M. (2018). Developing
geopolymer concrete by using cold-bonded fly ash
aggregate, nano-silica, and steel fiber. Construction and
Building Materials, 180, 12-22. https://doi.org/10.1016/j.
conbuildmat.2018.05.274
[44]. Tran, V. A., Hwang, C. L., & Vo, D. H. (2021).
Manufacture and engineering properties of cementitious
mortar incorporating unground rice husk ash as fine
aggregate. Journal of Materials in Civil Engineering,
33(10), 04021258. https://doi.org/10.1061/(asce)mt.1943-5533.0003888
[45]. Wanjari, S. P., Agrawal, U. S., & Naresh, D. N. (2018,
October). Geopolymer sand as a replacement to natural
sand in concrete. IOP Conference Series: Materials
Science and Engineering, 431(9), 092011. https://doi.org/10.1088/1757-899X/431/9/092011
[46]. Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., &
Chaipanich, A. (2012). Compressive strength, flexural
strength and thermal conductivity of autoclaved
concrete block made using bottom ash as cement
replacement materials. Materials & Design, 35, 434-439.
https://doi.org/10.1016/j.matdes.2011.08.046
[47]. Wu, F., Liu, C., Sun, W., Zhang, L., & Ma, Y. (2019).
Mechanical and creep properties of concrete
containing apricot shell lightweight aggregate. KSCE
Journal of Civil Engineering, 23(7), 2948-2957. https://doi.org/10.1007/s12205-019-0738-2
[48]. Yaragal, S. C., Gowda, S. B., & Rajasekaran, C.
(2019). Characterization and performance of processed
lateritic fine aggregates in cement mortars and
concretes. Construction and Building Materials, 200, 10-
25. https://doi.org/10.1016/j.conbuildmat.2018.12.072
[49]. You, N., Liu, Y., Gu, D., Ozbakkaloglu, T., Pan, J., &
Zhang, Y. (2020). Rheology, shrinkage and pore structure
of alkali-activated slag-fly ash mortar incorporating
copper slag as fine aggregate. Construction and Building
Materials, 242, 118029. https://doi.org/10.1016/j.conbuildmat.2020.118029