References
[1]. Akkar, S., Sucuoğlu, H., & Yakut, A. (2005).
Displacement-based fragility functions for low-and mid-rise ordinary concrete buildings. Earthquake Spectra,
21(4), 901-927. https://doi.org/10.1193%2F1.2084232
[2]. Baker, J. W., & Cornell, C. A. (2005). A vector valued
ground motion intensity measure consisting of spectral
acceleration and epsilon. Earthquake Engineering &
Structural Dynamics, 34(10), 1193-1217. https://doi.org/10.1002/eqe.474
[3]. Barbat, A. H., Moya, F. Y., & Canas, J. (1996). Damage
scenarios simulation for seismic risk assessment in urban
z o n e s. E a r t h q u a ke S p e c t r a , 1 2 ( 3 ) , 3 7 1 - 3 9 4 .
https://doi.org/10.1193%2F1.1585889
[4]. Beulah, R., & Rajaram, C. (2019). Evaluation of
seismic damage parameters for reinforced concrete
frame buildings. Internal Conference on Innovative
Trends in Civil Engineering for Sustainable Development
(ITCSD-2019), Warangal.
[5]. Biskinis, D. E., Roupakias, G. K., & Fardis, M. N. (2004).
Degradation of shear strength of reinforced concrete
members with inelastic cyclic displacements. Structural
Journal, 101(6), 773-783.
[6]. Bouchon, M., & Aki, K. (1982). Strain, tilt, and rotation
associated with strong ground motion in the vicinity of
earthquake faults. Bulletin of the Seismological Society of
America, 72(5), 1717-1738. https://doi.org/10.1785/BSSA0720051717
[7]. Bozorgnia, Y., & Bertero, V. V. (2001). Evaluation of
damage potential of recorded earthquake ground
motion. Seismological Research Letters, Vol.72, pp. 233.
[8]. Fardis, M. N. (2000, November). Eurocode 8–Present
state, pre-normative and co-normative research needs
(including design seismic action). In Proceedings of the
Workshop on Mitigation of Seismic Risk Support to
Recently Affected European Countries, European
Commission-JRC, Belgirate (VB), Italy (pp. 1-10).
[9]. Graizer, V. M. (2006). Equation of pendulum motion
including rotations and its implications to the strongground
motion. In Earthquake source asymmetry,
structural media and rotation effects (pp. 471-485).
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31337-0_34
[10]. Jamaluddin, M. F. (2011). Performance of low rise building due to the earthquake. Thesis. University Technology MARA, Shah Alam, Malaysia.
[11]. Mpampatsikos, V., Nascimbene, R., & Petrini, L.
(2008). A critical review of the RC frame existing building
assessment procedure according to Eurocode 8 and
Italian seismic code. Journal of Earthquake Engineering,
12(S1), 52-82. https://doi.org/10.1080/13632460801925020
[12]. Nyhoff, L., & Leestma, S. (1996). FORTRAN 77 for
Engineers and Scientists with an Introduction to FORTRAN
90 (4th Ed.), Prentice-Hall, Upper Saddle River, New Jersey.
[13]. Rajaram, C., & Kumar, R. P. (2014). Vulnerability
Assessment of Coastal Structure: A Study on Port Buildings.
International Journal of Education and Applied
Research, 4(2), 9-15.
[14]. Trifunac, M. D. (1971). Zero baseline correction of
strong-motion accelerograms. Bulletin of the Seismological Society of America, 61(5), 1201-1211. https://doi.org/10.1785/BSSA0610051201
[15]. Trifunac, M. D., & Hudson, D. E. (1971). Analysis of the
Pacoima dam accelerogram—San Fernando,
California, earthquake of 1971. Bulletin of the
seismological Society of America, 61(5), 1393-1411.
https://doi.org/10.1785/BSSA0610051393
[16]. Trifunac, M. D., & Todorovska, M. I. (1998). Nonlinear
soil response as a natural passive isolation
mechanism—the 1994 Northridge, California,
earthquake. Soil Dynamics and Earthquake Engineering,
17(1), 41-51. https://doi.org/10.1016/S0267-7261(97)00028-6
[17]. Tselentis, G. A., & Makropoulos, K. C. (1986). Rates of
crustal deformation in the Gulf of Corinth (central Greece)
as determined from seismicity. Tectonophysics, 124(1-2),
55-66. https://doi.org/10.1016/0040-1951(86)90137-X