References
[1]. Access Science. (2016). Potential Uses of Bio-char. Access Science, McGraw- Hill Education. https://doi.org/
10.1036/1097-8542.BR1118161
[2]. Agblevor, F. A., Beis, S., Kim, S. S., Tarrant, R., & Mante,
N. O. (2010). Biocrude oils from the fast pyrolysis of poultry
litter and hardwood. Waste Management, 30(2), 298-
307. https://doi.org/10.1016/j.wasman.2009.09.042
[3]. Ahmad, S., Khushnood, R. A., Jagdale, P., Tulliani, J.
M., & Ferro, G. A. (2015). High performance selfconsolidating
cementitious composites by using micro
carbonized bamboo particles. Materials & Design, 76,
223-229. https://doi.org/10.1016/j.matdes.2015.03.048
[4]. Alaya, M. N., Girgis, B. S., & Mourad, W. E. (2000).
Activated carbon from some agricultural wastes under
action of one-step steam pyrolysis. Journal of Porous
Materials, 7(4), 509-517. https://doi.org/10.1023/A:10096
30928646
[5]. Amonette, J. E., & Joseph, S. (2012). Characteristics of
biochar: Microchemical properties. In Biochar for
environmental management (pp. 65-84). Routledge.
[6]. Angın, D. (2013). Effect of pyrolysis temperature and
heating rate on biochar obtained from pyrolysis of
safflower seed press cake. Bioresource Technology, 128,
593-597. https://doi.org/10.1016/j.biortech.2012.10.150
[7]. Antal, M. J., & Grønli, M. (2003). The art, science, and
technology of charcoal production. Industrial &
Engineering Chemistry Research, 42(8), 1619-1640.
https://doi.org/10.1021/ie0207919
[8]. Arenillas, A., Smith, K. M., Drage, T. C., & Snape, C. E.
(2005). CO capture using some fly ash-derived carbon 2
materials. Fuel, 84(17), 2204-2210. https://doi.org/10.
1016/j.fuel.2005.04.003
[9]. Azargohar, R., & Dalai, A. K. (2008). Steam and KOH
activation of biochar: Experimental and modeling
studies. Microporous and Mesoporous Materials, 110(2-
3), 413-421. https://doi.org/10.1016/j.micromeso.2007.06.047
[10]. Bansal, R. C., Donnet, J., & Stoeckli, F. (1998). Active
Carbon. Marcel Dekker, New York.
[11]. Boateng, A. A. (2007). Characterization and thermal
conversion of charcoal derived from fluidized-bed fast
pyrolysis oil production of switchgrass. Industrial &
Engineering Chemistry Research, 46(26), 8857-8862.
https://doi.org/10.1021/ie071054l
[12]. Brewer, C. E., Chuang, V. J., Masiello, C. A.,
Gonnermann, H., Gao, X., Dugan, B., ... & Davies, C. A.
(2014). New approaches to measuring biochar density
and porosity. Biomass and Bioenergy, 66, 176-185.
https://doi.org/10.1016/j.biombioe.2014.03.059
[13]. Ithaka Institute. (n.d.). Bio-char as Building Material.
Ithaka Institute – Building Material, Ithaka Institute.
Retrieved from https://www.ithaka-institut.org/en/ct/97
[14]. Joseph, S. D., Downie, A., Munroe, P., Crosky, A., &
Lehmann, J. (2007, December). Biochar for carbon
sequestration, reduction of greenhouse gas emissions
and enhancement of soil fertility; A review of the materials
science. In Proceedings of the Australian Combustion
Symposium (pp. 130-133).
[15]. Khushnood, R. A., Ahmad, S., Restuccia, L., Spoto,
C., Jagdale, P., Tulliani, J. M., & Ferro, G. A. (2016).
Carbonized nano/microparticles for enhanced
me c h a n i c a l p r o p e r t i e s a n d e l e c t r oma g n e t i c
interference shielding of cementitious materials. Frontiers
of Structural and Civil Engineering, 10(2), 209-213.
https://doi.org/10.1007/s11709-016-0330-5
[16]. Rodgers, L. (2018). Climate change: The massive
CO2 emitter you may not know about. BBC News, 17(12),
1-5.
[17]. Yip, K., Tian, F., Hayashi, J. I., & Wu, H. (2010). Effect
of alkali and alkaline earth metallic species on biochar
reactivity and syngas compositions during steam
gasification. Energy & Fuels, 24(1), 173-181.
https://doi.org/10.1021/ef900534n