References
[1]. American Association of State Highway and Transportation Officials. (1993). Guide for design of pavement structures. Washington, D.C: AASHTO.
[2]. American Society for Testing and Materials. (2009). Standard specification for graded aggregate material for bases or subbases for highways or airports. West Conshohocken, PA: ASTM International. https://doi.org/10.1 520/D2940D2940M-15
[3]. Arisha, A. M., Gabr, A. R., El-Badawy, S. M., & Shwally, S. A. (2018). Performance evaluation of construction and demolition waste materials for pavement construction in Egypt. Journal of Materials in Civil Engineering, 30(2), 1–14. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002127
[4]. Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Suksiripattanapong, C., & Prongmanee, N. (2014). Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 58, 245-257. https:// doi.org/10.1016/j.conbuildmat.2014.02.025
[5]. Arulrajah, A., Piratheepan, J., Bo, M. W., & Sivakugan, N. (2012). Geotechnical characteristics of recycled crushed brick blends for pavement sub-base applications. Canadian Geotechnical Journal, 49(7), 796-811. https:// doi.org/10.1139/t2012-041
[6]. Azam, A. M., & Cameron, D. A. (2013). Geotechnical properties of blends of recycled clay masonry and recycled concrete aggregates in unbound pavement construction. Journal of Materials in Civil Engineering, 25(6), 788-798. https://doi.org/10.1061/(ASCE)MT.1943-55 33.0000634
[7]. Bestgen, J. O., Hatipoglu, M., Cetin, B., & Aydilek, A. H. (2016). Mechanical and environmental suitability of recycled concrete aggregate as a highway base material. Journal of Materials in Civil Engineering, 28(9), 1–13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001564
[8]. Blankenagel, B. J., & Guthrie, W. S. (2006). Laboratory characterization of recycled concrete for use as pavement base material. Transportation Research Record, 1952(1), 21-27. https://doi.org/10.1177%2F03611 98106195200103
[9]. Chummuneerat, S., Jitsangiam, P., & Nikraz, H. (2013, August). Shrinkage behaviour of cement modified base course materials for Western Australian pavements. In International Public Works Conference.
[10]. Davis, K. A., Warr, L. S., Burns, S. E., & Hoppe, E. J. (2007). Physical and chemical behavior of four cementtreated aggregates. Journal of Materials in Civil Engineering, 19(10), 891-897. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(891)
[11]. Dong, Q., & Huang, B. (2014). Laboratory evaluation on resilient modulus and rate dependencies of RAP used as unbound base material. Journal of Materials in Civil Engineering, 26(2), 379-383. https://doi.org/10.1061/(AS CE)MT.1943-5533.0000820
[12]. Euch Khay, S. E., Euch Ben Said, S. E., Loulizi, A., & Neji, J. (2015). Laboratory investigation of cement-treated reclaimed asphalt pavement material. Journal of Materials in Civil Engineering, 27(6), 04014192. https://doi. org/10.1061/(ASCE)MT.1943-5533.0001158
[13]. Ghanizadeh, A. R., Rahrovan, M., & Bafghi, K. B. (2018). The effect of cement and reclaimed asphalt pavement on the mechanical properties of stabilized base via full-depth reclamation. Construction and Building Materials, 161, 165-174. https://doi.org/10.1016/j.con buildmat.2017.11.124
[14]. Grilli, A., Bocci, E., & Graziani, A. (2013). Influence of reclaimed asphalt content on the mechanical behaviour of cement-treated mixtures. Road Materials and Pavement Design, 14(3), 666-678. https://doi.org/10.1080/ 14680629.2013.794367
[15]. Guthrie, W. S., Brown, A. V., & Eggett, D. L. (2007). Cement stabilization of aggregate base material blended with reclaimed asphalt pavement. Transportation Research Record, 2026(1), 47-53. https://doi.org/10.3141 %2F2026-06
[16]. Guthrie, W. S., Young, T. B., Blankenagel, B. J., & Cooley, D. A. (2005). Early-age strength assessment of cement-treated base material. Transportation Research Record, 1936(1), 12-19. https://doi.org/10.1177%2F03611 98105193600102
[17]. Haider, I., Cetin, B., Kaya, Z., Hatipoglu, M., Cetin, A., & Ahmet, H. A. (2014). Evaluation of the mechanical performance of recycled concrete aggregates used in highway base layers. In Geo-Congress 2014: Geocharacterization and Modeling for Sustainability (pp. 3686-3694). https://doi.org/10.1061/9780784413272.357
[18]. Hu, L., Hao, J., & Wang, L. (2014). Laboratory evaluation of cement treated aggregate containing crushed clay brick. Journal of Traffic and Transportation Engineering (English Edition), 1(5), 371-382. https://doi.org/ 10.1016/S2095-7564(15)30283-X
[19]. LaHucik, J., Schmidt, S., Tutumluer, E., & Roesler, J. (2016). Cement-treated bases containing reclaimed asphalt pavement, quarry by-products, and fibers. Transportation Research Record, 2580(1), 10-17. https:// doi.org/10.3141%2F2580-02
[20]. Mohammadinia, A., Arulrajah, A., Horpibulsuk, S., & Chinkulkijniwat, A. (2017). Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/sub-base applications. Journal of Hazardous Materials, 321, 547-556. https://doi.org/10.1016/j.jhazmat. 2016.09.039
[21]. Ministry of Road Transport and Highways. (2013). Specifications for road and bridge works (5th ed.). New Delhi, India: Indian Road Congress. Retrieved from https:// skmobi.files.wordpress.com/2017/04/morth-specifications -for-road-bridge-works-5th-revision-by-sk.pdf
[22]. Ministry of Road Transport and Highways. (2019). Basic road statistics in India (2016-2017). New Delhi, India: Transport Research Wing. Retrieved from https://morth.nic. in/sites/default/files/Basic%20_Road_Statics_of_India.pdf
[23]. Patil, V. P., & Karvekar, A. V. (2017). A review on a study of cement treated base and sub-base in flexible pavement. International Journal of Civil Engineering and Technology (IJCIET), 6(7), 1442-1444.
[24]. Patil, V. P., & Karvekar, A. V. (2019). A study of cement treated base and sub base in flexible pavement. International Journal of Engineering Research and Technology, 6(8), 1013-1016.
[25]. Poon, C. S., & Chan, D. (2006). Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 20(8), 578-585. https://doi.org/10.1016/j.con buildmat.2005.01.045
[26]. Prasad, S. (2016). Feasibility study on cement treated base and sub base layers of service roads - A case study on Khed Sinnar NH 50 project. International Research Journal of Engineering and Technology (IRJET), 3(9), 1455-1460.
[27]. Puppala, A. J., Hoyos, L. R., & Potturi, A. K. (2011). Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates. Journal of Materials in Civil Engineering, 23(7), 990-998. https://doi. org/10.1061/(ASCE)MT.1943-5533.0000268
[28]. Puppala, A. J., Pedarla, A., Chittoori, B., Ganne, V. K., & Nazarian, S. (2017). Long-term durability studies on chemically treated reclaimed asphalt pavement material as a base layer for pavements. Transportation Research Record, 2657(1), 1-9. https://doi.org/10.3141%2F2657-01
[29]. Saha, D. C., & Mandal, J. N. (2017). Laboratory investigations on reclaimed asphalt pavement (RAP) for using it as base course of flexible pavement. Procedia Engineering, 189, 434-439. https://doi.org/10.1016/j.pro eng.2017.05.069
[30]. Scullion, T., & Harris, P. (1998). Forensic evaluation of three failed cement-treated base pavements. Transportation Research Record, 1611(1), 10-18. https://doi.org/10.3141 %2F1611-02
[31]. Sebesta, S. (2005). Use of microcracking to reduce shrinkage cracking in cement-treated bases. Transportation Research Record, 1936(1), 2-11. https://doi.org/10.1177% 2F0361198105193600101
[32]. Soares, R., Haichert, R., Podborochynski, D., & Berthelot, C. (2013). Modeling in situ performance of cement-stabilized granular base layers of urban roads. Transportation Research Record, 2363(1), 88-95. https:// doi.org/10.3141%2F2363-10
[33]. Taha, R., Al-Harthy, A., Al-Shamsi, K., & Al-Zubeidi, M. (2002). Cement stabilization of reclaimed asphalt pavement aggregate for road bases and sub-bases. Journal of Materials in Civil Engineering, 14(3), 239-245. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(239)
[34]. Thakur, J. K., Han, J., & Parsons, R. L. (2017). Factors influencing deformations of geo cell-reinforced recycled asphalt pavement bases under cyclic loading. Journal of Materials in Civil Engineering, 29(3). https://doi.org/ 10.1061/(ASCE)MT.1943-5533.0001760
[35]. Xuan, D. X., Houben, L. J. M., Molenaar, A. A. A., & Shui, Z. H. (2012a). Mechanical properties of cementtreated aggregate material–a review. Materials and Design, 33, 496-502. https://doi.org/10.1016/j.matdes. 2011.04.055
[36]. Xuan, D. X., Houben, L. J. M., Molenaar, A. A. A., & Shui, Z. H. (2012b). Mixture optimization of cement treated demolition waste with recycled masonry and concrete. Materials and Structures, 45(1), 143-151. https://doi.org/ 10.1617/s11527-011-9756-3
[37]. Yuan, D., Nazarian, S., Hoyos, L. R., & Puppala, A. J. (2011). Evaluation and mix design of cement-treated base materials with high content of reclaimed asphalt pavement. Transportation Research Record, 2212(1), 110- 119. https://doi.org/10.3141%2F2212-12