References
[1]. Abdel-Rahman, N., & Sivakumaran, K. S. (1997). Material properties models for analysis of cold-formed steel members. Journal of Structural Engineering, 123(9), 1135- 1143. https://doi.org/10.1061/(ASCE)0733-9445(1997)123: 9(1135)
[2]. Ananthi, G. B. G. (2016). Performance of plain and lipped cold-formed channel sections in axial compression. International Journal of Earth Sciences and Engineering, 9(4), 1421-1428.
[3]. Ananthi, G. B. G., Knight, G. S., Iyer, N. R., & Marimuthu, V. (2012). Behaviour of cold-formed plain channels under compression. Journal of Structural Engineering, 39(3), 237-244.
[4]. Chou, C. C., Hsiao, C. H., Chen, Z. B., Chung, P. T., & Pham, D. H. (2019). Seismic loading tests of full-scale twostory steel building frames with self-centering braces and buckling-restrained braces. Thin-Walled Structures, 140, 168-181. https://doi.org/10.1016/j.tws.2019.03.024
[5]. Dundu, M. (2014). Buckling of short cold-formed lipped channels in compression. Joernaal van die Suid-Afrikaanse Instituut van Siviele Ingenieurswese, 56(2), 46-53.
[6]. El-Sheikh, A. I., El-Kassas, E. M. A., & Mackie, R. I. (2001). Performance of stiffened and unstiffened cold-formed channel members in axial compression. Engineering Structures, 23(10), 1221-1231. https://doi.org/10.1016/S01 41-0296(01)00034-7
[7]. Feng, M., Wang, Y. C., & Davies, J. M. (2003). Structural behaviour of cold-formed thin-walled short steel channel columns at elevated temperatures. Thin-Walled Structures, 41(6), 543-570. https://doi.org/10.1016/S0263-8231(03)00 002-8
[8]. Gardner, L., & Yun, X. (2018). Description of stress-strain curves for cold-formed steels. Construction and Building Materials, 189, 527-538. https://doi.org/10.1016/j.con buildmat.2018.08.195
[9]. Guerrero, H., Escobar, J. A., & Teran-Gilmore, A. (2018). Experimental damping on frame structures equipped with buckling-restrained braces (BRBs) working within their linearelastic response. Soil Dynamics and Earthquake Engineering, 106, 196-203. https://doi.org/10.1016/j.soildy n.2017.12.028
[10]. Haidarali, M. R., & Nethercot, D. A. (2012). Local and distortional buckling of cold-formed steel beams with both edge and intermediate stiffeners in their compression flanges. Thin-Walled Structures, 54, 106-112. https://doi. org/10.1016/j.tws.2012.02.013
[11]. Hegyi, P., & Dunai, L. (2016). Experimental study on ultra-lightweight-concrete encased cold-formed steel structures Part I: Stability behaviour of elements subjected to bending. Thin-Walled Structures, 101, 75-84. https://doi. org/10.1016/j.tws.2016.01.004
[12]. Huang, Z., Liew, J. R., & Li, W. (2017). Evaluation of compressive behavior of ultra-lightweight cement composite after elevated temperature exposure. Construction and Building Materials, 148, 579-589. https:// doi.org/10.1016/j.conbuildmat.2017.04.121
[13]. Huang, Z., Liew, J. R., Xiong, M., & Wang, J. (2015). Structural behaviour of double skin composite system using ultra-lightweight cement composite. Construction and Building Materials, 86, 51-63. https://doi.org/10.1016/j.con buildmat.2015.03.092
[14]. Lam, S. S. E., Chung, K. F., & Wang, X. P. (2006). Loadcarrying capacities of cold-formed steel cut stub columns with lipped C-section. Thin-Walled Structures, 44(10), 1077- 1083. https://doi.org/10.1016/j.tws.2006.10.011
[15]. Li, G. Q., Sun, Y. Z., Jiang, J., Sun, F. F., & Ji, C. (2019). Experimental study on two-level yielding bucklingrestrained braces. Journal of Constructional Steel Research, 159, 260-269. https://doi.org/10.1016/j.jcsr.201 9.04.042
[16]. Liu, X., Zhang, M. H., Chia, K. S., Yan, J., & Liew, J. R. (2016). Mechanical properties of ultra-lightweight cement composite at low temperatures of 0 to 60 °C. Cement and Concrete Composites, 73, 289-298. https://doi.org/10.10 16/j.cemconcomp.2016.05.014
[17]. Martins, A. D., Camotim, D., Dinis, P. B., & Young, B. (2015, November). Local–distortional interaction in coldformed steel columns: Mechanics, testing, numerical simulation and design. Structures, (4), 38-57). https://doi. org/10.1016/j.istruc.2015.10.005
[18]. Nandini, P., & Kalyanaraman, V. (2010). Strength of cold-formed lipped channel beams under interaction of local, distortional and lateral torsional buckling. Thin-Walled Structures, 48(10-11), 872-877. https://doi.org/10.1016/j.tw s.2010.04.013
[19]. Paczos, P., & Wasilewicz, P. (2009). Experimental investigations of buckling of lipped, cold-formed thinwalled beams with I-section. Thin-Walled Structures, 47(11), 1354-1362. https://doi.org/10.1016/j.tws.2009.03.009
[20]. Riahi, F., Zirakian, T., Ghaderi, V. M., & Arya, S. (2018). Buckling stability assessment of plates under uniaxial compression. Advances in Science and Technology Research Journal, 12(2), 97-105. http://doi.org/10.12913/2 2998624/90789
[21]. Rokilan, M., & Mahendran, M. (2020). Elevated temperature mechanical properties of cold-rolled steel sheets and cold-formed steel sections. Journal of Constructional Steel Research, 167. https://doi.org/10.101 6/j.jcsr.2019.105851
[22]. Sabelli, R., Mahin, S., & Chang, C. (2003). Seismic demands on steel braced frame buildings with bucklingrestrained braces. Engineering Structures, 25(5), 655-666. https://doi.org/10.1016/S0141-0296(02)00175-X
[23]. Sastry, Y. B. S., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416-424. https://doi.org/10.1016/j.commatsci.2014.07.058
[24]. Sawant, S., & Galatage, A. (2017). Experimental analysis of PAC encased cold formed steel sections. International Journal of Advance Research and Innovative Ideas in Education, 3(5), 633-642.
[25]. Schafer, B. W. (2002). Local, distortional, and Euler buckling of thin-walled columns. Journal of Structural Engineering, 128(3), 289-299. https://doi.org/10.1061/ (ASCE)0733-9445(2002)128:3(289)
[26]. Takeuchi, T., Hajjar, J. F., Matsui, R., Nishimoto, K., & Aiken, I. D. (2010). Local buckling restraint condition for core plates in buckling restrained braces. Journal of Constructional Steel Research, 66(2), 139-149. https://doi. org/10.1016/j.jcsr.2009.09.002
[27]. Ungureanu, V., Kotełko, M., Borkowski, Ł., & Grudziecki, J. (2018, January). Behaviour of thin-walled cold-formed steel members in eccentric compression. In AIP Conference Proceedings (Vol. 1922). AIP Publishing LLC. https://doi.org/10.1063/1.5019077
[28]. Vijayasimhan, M., Marimuthu, V., Palani, G. S., & Rama Mohan Rao, P. (2013). Comparative study on distortional buckling strength of cold-formed steel lipped channel sections. Research Journal of Engineering Sciences, 2(4), 10-15.
[29]. Wang, J. Y., Yang, Y., Liew, J. Y. R., & Zhang, M. H. (2014). Method to determine mixture proportions of workable ultra lightweight cement composites to achieve target unit weights. Cement and Concrete Composites, 53, 178-186. https://doi.org/10.1016/j.cemconcomp. 2014.07.006
[30]. Wu, B., Lu, J., Mei, Y., & Zhang, J. (2017). Buckling mechanism and global stability design method of buckling-restrained braces. Journal of Constructional Steel Research, 138, 473-487. https://doi.org/10.1016/j.jcsr.20 17.07.023
[31]. Wu, Y., Wang, J. Y., Monteiro, P. J., & Zhang, M. H. (2015). Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials, 87, 100-112. https://doi.org/10.1016/j.conbuild mat.2015.04.004
[32]. Young, B. (2008). Research on cold-formed steel columns. Thin-Walled Structures, 46(7-9), 731-740. https:// doi.org/10.1016/j.tws.2008.01.025