References
[1]. Bindhu, M. K. (2016). Investigations on material
characteristics and flexural behaviour of reinforced
Geopolymer concrete beams (Doctoral dissertation), St.
Peters University, Tamil Nadu, India. Retrieved from https://
shodhganga.inflibnet.ac.in/handle/10603/180772
[2]. Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2015). Effects of
nano-silica on the strength development of geopolymer
cured at room temperature. Construction and Building
Materials, 101, 675-683. https://doi.org/10.1016/j.conbuil
dmat.2015.10.044
[3]. Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J.
S. (2007). The role of inorganic polymer technology in the
development of 'green concrete'. Cement and Concrete
Research, 37(12), 1590-1597. https://doi.org/10.1016/j.ce
mconres.2007.08.018
[4]. Gunasekara, C., Law, D. W., Setunge, S., & Sanjayan, J.
G. (2015). Zeta potential, gel formation and compressive
strength of low calcium fly ash geopolymers. Construction
and Building Materials, 95, 592-599. https://doi.org/10.10
16/j.conbuildmat.2015.07.175
[5]. Huang, L. J., Sheen, Y. N., & Le, D. H. (2014). On the
multiple linear regression and artificial neural networks for
strength prediction of soil-based controlled low-strength
material. In Applied Mechanics and Materials (Vol. 597, pp.
349-352). Trans Tech Publications Ltd.
[6]. Krishna, A. S., & Rao, V. R. (2019). Strength Prediction of
Geopolymer Concrete using ANN. International Journal of
Recent Technology and Engineering (IJRTE), 7(6C2), 661-
667.
[7]. Patankar, S. V., Jamkar, S. S., & Ghugal, Y. M. (2014).
Effect of grading of fine aggregate on Flow and
compressive strength of geopolymer concrete. In UKEIRI Concrete Congress - Innovations in Concrete Construction
(pp. 1163-1172).
[8]. Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The
mechanical properties of fly ash-based geopolymer
concrete with alkaline activators. Construction and
Building Materials, 47, 409-418. https://doi.org/10.1016/j.c
onbuildmat.2013.05.069
[9]. Singh, M., & Siddique, R. (2014). Strength properties
and micro-structural properties of concrete containing
coal bottom ash as partial replacement of fine aggregate.
Construction and Building Materials, 50, 246-256. https://
doi.org/10.1016/j.conbuildmat.2013.09.026
[10]. Sreenivasulu, C., Guru, J. J., Sekhar, R. M. V., & Pavan,
K. D. (2016). Effect of fine aggregate blending on shortterm
mechanical properties of geopolymer concrete.
Asian Journal of Civil Engineering (Building And Housing),
17(5), 537–550.
[11]. Tharrini, J. (2017). Experimental investigations on the feasibility of using bottom ash and foundry sand in
geopolymer concrete elements (Doctoral dissertation),
Anna University, Chennai, Tamilnadu, India. Retrieved from
https://shodhganga.inflibnet.ac.in/handle/10603/195715
[12]. Uyanık, G. K., & Güler, N. (2013). A study on multiple
linear regression analysis. Procedia-Social and Behavioral
Sciences, 106, 234-240. https://doi.org/10.1016/j.sbspro.
2013.12.027
[13]. Vasugi, V., & Ramamurthy, K. (2014). Identification of
design parameters influencing manufacture and
properties of cold-bonded pond ash aggregate. Materials
& Design (1980-2015), 54, 264-278. https://doi.org/10.10
16/j.matdes.2013.08.019
[14]. Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014).
Geopolymer foam concrete: An emerging material for
sustainable construction. Construction and Building
Materials, 56, 113-127. https://doi.org/10.1016/j.conbuild
mat.2014.01.081