Optimization of Layer Thickness of HTL Free Perovskite Solar Cell

Tharun T. *, Manimegala A. **, Vasantharthan A. ***, Vinitha N. ****, Shenbagapriya M. *****
*-***** Department of Electronics and Communication Engineering, Knowledge Institute of Technology, Salem, Tamil Nadu, India.
Periodicity:January - March'2021
DOI : https://doi.org/10.26634/jms.8.4.17536

Abstract

In the last 10 years, perovskite solar cells (PSC) had their efficiencies increased from 3.8% to 25.5% while other photovoltaic technologies have never witnessed such dramatic increase in such short span of time. Despite interesting properties of the perovskite material, it suffers from poor moisture, UV and temperature stability. In this work, we intend to create a solar cell design by removing the hole transporting layer along with the use of bilayer electron transporting layer. The thickness of all the layers in the solar cell are optimized with GPVDM simulation software to get higher efficiency. This is done to enhance the stability while having more efficiency for a HTL free device architecture. Efficiency of nearly 15.6% has been obtained for the layer thickness optimized device.

Keywords

HTL Free, Perovskite, GPVDM, Optimization.

How to Cite this Article?

Tharun, T., Manimegala, A., Vasantharthan, A., Vinith, N., and Shenbagapriya, M. (2021). Optimization of Layer Thickness of HTL Free Perovskite Solar Cell. i-manager's Journal on Material Science, 8(4), 31-37. https://doi.org/10.26634/jms.8.4.17536

References

[1]. Ahmed, S., Shaffer, J., Harris, J., Pham, M., Daniel, A., Chowdhury, S., & Banerjee, S. (2019). Simulation studies of non-toxic tin-based perovskites: Critical insights into solar performance kinetics through comparison with standard lead-based devices. Superlattices and Microstructures, 130, 20-27. https://doi.org/10.1016/j.spmi.2019.04.017
[2]. Baena, J. P. C., Abate, A., Saliba, M., Tress, W., Jacobsson, T. J., Gratzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10, 710-727. https://doi. org/10.1039/C6EE03397K
[3]. Boyd, C. C., Cheacharoen, R., Leijtens, T., & McGehee, M. D. (2018). Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chemical Reviews, 119(5), 3418-3451. https://doi.org/10.1021/acs.chemrev.8b00336
[4]. Etgar, L. (2016). Hole-transport material-free perovskitebased solar cells. MRS Bulletin, 40, 674-679. https://doi.org/ 10.1557/mrs.2015.174
[5]. Green, M. A., Ho-Baillie, A., Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8, 506-512. https://doi.org/10.1038/nphoton.2014.134
[6]. Hima, A., Lakhdar, N., Benhaoua, B., Saadoune, A., Kemerchou, I., & Rogti, F. (2019). An optimized perovskite solar cell designs for high conversion efficiency. Superlattices and Microstructures, 129, 240-246. https:// doi.org/10.1016/j.spmi.2019.04.007
[7]. Pham, M., Harris, J., Shaffer, J., Daniel, A., Chowdhury, S., Ali, A., ... & Ahmed, S. (2019). Bismuth perovskite as a viable alternative to Pb perovskite solar cells: Device simulations to delineate critical efficiency dynamics. Journal of Materials Science: Materials in Electronics, 30(10), 9438-9443. https://doi.org/10.1007/s10854-019- 01275-3
[8]. Qiu, W., Buffiere, M., Brammertz, G., Paetzold, U. W., Froyen, L., Heremans, P., & Cheyns, D. (2015). High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Organic Electronics, 26, 30-35. https://doi.org/10.1016/j.orgel.201 5.06.046
[9]. Saquib, A., Harris, J., Shaffer, J., Devgun, M., Chowdhury, S., Abdullah, A., & Banerjee, S. (2019). Simulation studies of Sn-based perovskites with Cu backcontact for non-toxic and non-corrosive devices. Journal of Materials Research, 34(16), 2789-2795. https://doi.org/10. 1557/jmr.2019.204
[10]. Snaith, H. J. (2013). Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. The Journal of Physical Chemistry Letters, 4(21), 3623-3630. https:// doi.org/10.1021/jz4020162
[11]. Wang, K., Lin, Z., Ma, J., Liu, Z., Zhou, L., Du, J., ... & Hao, Y. (2017). High-performance simple-structured planar heterojunction perovskite solar cells achieved by precursor optimization. ACS Omega, 2(9), 6250-6258.
[12]. Wang, R., Mujahid, M., Duan, Y., Wang, Z. K., Xue, J., & Yang, Y. (2019). A review of perovskites solar cell stability. Advanced Functional Materials, 29(47). https://doi.org/ 10.1002/adfm.201808843
[13]. Zhang, L. Q., Zhang, X. W., Yin, Z. G., Jiang, Q., Liu, X., Meng, J. H., ... & Wang, H. L. (2015). Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. Journal of Materials Chemistry A, 3(23), 12133-12138. https://doi.org/10.1039/ C5TA01898F
[14]. Zhang, Y., Hu, X., Chen, L., Huang, Z., Fu, Q., Liu, Y., ... & Chen, Y. (2016). Flexible, hole transporting layer-free and stable CH3 NH3 PbI61 /PC BM planar heterojunction perovskite solar cells. Organic Electronics, 30, 281-288. https://doi. org/10.1016/j.orgel.2016.01.002
[15]. Zhou, Z., & Pang, S. (2020). Highly efficient inverted hole-transport-layer-free perovskite solar cells. Journal of Materials Chemistry A, 8(2), 503-512.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.