References
[1]. Bureau of Indian Standard. (1963a). Methods of test for
aggregates for concrete, Part 1: Particle size and shape
(IS: 2386(Part-I)-1963). New Delhi, India.
[2]. Bureau of Indian Standard. (1963b). Methods of test for
aggregates for concrete, Part 3: Specific gravity, density,
voids, absorption and bulking (IS: 2386(Part III)-1963). New
Delhi, India.
[3]. Bureau of Indian Standard. (1970). Specification for
Coarse Aggregate and Fine Aggregates from Natural
Sources for Concrete (IS: 383-1970). New Delhi, India.
[4]. Bureau of Indian Standard. (1988). Method of physical
tests for hydraulic cements, Part 4: Determination of consistency of standard cement paste (IS: 4031(Part-IV)-
1988). New Delhi, India.
[5]. Bureau of Indian Standard. (2003). Specification for 53
grade ordinary portland cement (IS:12269–2003). New
Delhi, India.
[6]. de Barros Martins, M. A., Barros, R. M., Silva, G., & dos
Santos, I. F. S. (2019). Study on waste foundry exhaust sand,
WFES, as a partial substitute of fine aggregates in
conventional concrete. Sustainable Cities and Society, 45,
187-196. https://doi.org/10.1016/j.scs.2018.11.017
[7]. de Matos, P. R., Marcon, M. F., Schankoski, R. A., &
Prudêncio Jr, L. R. (2019). Novel applications of waste
foundry sand in conventional and dry-mix concretes.
Journal of Environmental Management, 244, 294-303.
https://doi.org/10.1016/j.jenvman.2019.04.048
[8]. Dehghan, A., Peterson, K., & Shvarzman, A. (2017).
Recycled glass fiber reinforced polymer additions to
Portland cement concrete. Construction and Building
Materials, 146, 238–250. https://doi.org/10.1016/j.conbui
ldmat.2017.04.011
[9]. Deshmukh, S. H., Bhusari, J. P., & Zende, A. M. (2012).
Effect of glass fibers on ordinary Portland cement concrete.
IOSR Journal of Engineering, 2(6), 1308-1312.
[10]. Dong, M., Elchalakani, M., Karrech, A., Pham, T. M., &
Yang, B. (2019). Glass fibre-reinforced polymer circular
alkali-activated fly ash / slag concrete members under
combined loading. Engineering Structures, 199, 1-14.
https://doi.org/10.1016/j.engstruct.2019.109598
[11]. Gurumoorthy, N., & Arunachalam, K. (2019). Durability
studies on concrete containing treated used foundry sand.
Construction and Building Materials, 201, 651–661. https://
doi.org/10.1016/j.conbuildmat.2019.01.014
[12]. Huang, L. J., Sheen, Y. N., & Le, D. H. (2014). On the
multiple linear regression and artificial neural networks for
strength prediction of soil-based controlled low-strength
material. In Applied Mechanics and Materials (Vol. 597, pp.
349-352). Trans Tech Publications Ltd. https://doi.org/10.40
28/www.scientific.net/AMM.597.349
[13]. Katkhuda, H., & Shatarat, N. (2017). Improving the
mechanical properties of recycled concrete aggregate
using chopped basalt fibers and acid treatment. Construction and Building Materials, 140, 328–335. https://
doi.org/10.1016/j.conbuildmat.2017.02.128
[14]. Liu, Y., Li, Z., Liu, J., & Patel, H. (2016). Vehicular crash
data used to rank intersections by injury crash frequency
and severity. Data in Brief, 8, 930–933. https://doi.org/10.
1016/j.dib.2016.06.046
[15]. Manoharan, T., Laksmanan, D., Mylsamy, K., &
Sivakumar, P. (2018). Engineering properties of concrete
with partial utilization of used foundry sand. Waste
Management, 71, 454–460. https://doi.org/10.1016/j.was
man.2017.10.022
[16]. Mavroulidou, M., & Lawrence, D. (2019). Can waste
foundry sand fully replace structural concrete sand?
Journal of Material Cycles and Waste Management, 21(3),
594–605. https://doi.org/10.1007/s10163-018-00821-1
[17]. Pakgohar, A., Tabrizi, R. S., Khalili, M., & Esmaeili, A.
(2011). The role of human factor in incidence and severity
of road crashes based on the CART and LR regression: A
data mining approach. Procedia Computer Science, 3,
764-769. https://doi.org/10.1016/j.procs.2010.12.126
[18]. Sarbayev, M., Yang, M., & Wang, H. (2019). Risk
assessment of process systems by mapping fault tree into artificial neural network. Journal of Loss Prevention in the
Process Industries, 60, 203-212. https://doi.org/10.1016/j.
jlp.2019.05.006
[19]. Siddique, R., Schutter, G. D., & Noumowe, A. (2009). Effect
of used-foundry sand on the mechanical properties of
concrete. Construction and Building Materials, 23(2), 976–980.
https://doi.org/10.1016/j.conbuildmat.2008.05.005
[20]. Simões, T., Costa, H., Dias-da-Costa, D., & Júlio, E.
(2018). Influence of type and dosage of micro-fibres on the
physical properties of fibre reinforced mortar matrixes.
Construction and Building Materials, 187, 1277-1285.
https://doi.org/10.1016/j.conbuildmat.2018.08.058
[21]. Tittarelli, F. (2018). Waste foundry sand. In Waste an
Supplementary Cementitious Materials in Concrete, (pp.
121-147). https://doi.org/10.1016/B978-0-08-102156-9.00
004-3
[22]. Yugandhar, B., Bharath, B. B. K., Chandra, K. J., &
Reddy, N. M. (2017). Experimental study and strength of
concrete by using glass and steel fibres. International
Research Journal of Engineering and Technology (IRJET),
4(12), 1108– 1116.