References
[1]. Abdelfattah, H. F., Al-Shamsi, K., & Al-Jabri, K. (2018).
Evaluation of rutting potential for asphalt concrete mixes
containing copper slag. International Journal of Pavement
Engineering, 19(7), 630-640. https://doi.org/10.1080/10
298436.2016.1199875
[2]. Ayano, T., Kuramoto, O., & Sakata, K. (2000). Concrete
with copper slag fine aggregate. Zairyo/Journal of the
Society of Materials Science, 49(10), 1097-1102.
https://doi.org/10.2472/jsms.49.1097
[3]. Choudhary, J., Kumar, B., & Gupta, A. (2018).
Application of waste materials as fillers in bituminous mixes.
Waste Management, 78, 417-425. https://doi.org/10.10
16/j.wasman.2018.06.009
[4]. Dhar, A., Rajasankar, J., & Anandavalli, N. (2018). A
mathematical formulation to find effective bulk and shear
moduli of recycled aggregate concrete. Construction and
Building Materials, 168, 747-757. https://doi.org/10.1016/
j.conbuildmat.2018.02.067
[5]. Fadaee, M., Mirhosseini, R., Tabatabaei, R., & Fadaee,
M. J. (2015). Investigation on using copper slag as part of
cementitious materials in self compacting concrete. Asian
Journal of Civil Engineering, 16(3), 368-381.
[6]. Fakhri, M., Bahmai, B. B., Javadi, S., & Sharafi, M.
(2020). An evaluation of the mechanical and self-healing
properties of warm mix asphalt containing scrap metal
additives. Journal of Cleaner Production, 253, 119963.
https://doi.org/10.1016/j.jclepro.2020.119963
[7]. Gorai, B., & Jana, R. K. (2003). Characteristics and
utilization of copper slag: A review. Resources,
Conservation and Recycling, 39(4), 299-313. https://doi.o
rg/10.1016/S0921-3449(02)00171-4
[8]. Hassan, H. F., & Al-Jabri, K. (2011). Laboratory
evaluation of hot-mix asphalt concrete containing copper slag aggregate. Journal of Materials in Civil Engineering,
23(6), 879-885. https://doi.org/10.1061/(ASCE)MT.1943-
5533.0000246
[9]. Havanagi, V. G., Mathur, S., Prasad, P. S., & Kamaraj, C.
(2007). Feasibility of copper slag–Fly ash–soil mix as a road
construction material. Journal of the Transportation Research
Board, 1989-2(1), 13–20. https://doi.org/10.3141%2F1989-
43
[10]. International Copper Study Group. (2015). ICSG
Releases Latest Copper Market Forecast 2020-2021 [Press
elease]. Retrieved from www.icsg.org/index.php/111-icsgreleases-
latest-copper-market-forecast- 2017-2018.
[11]. Imris, I., Rebolledo, S., Sanchez, M., Castro, G.,
Achurra, G., & Hernandez, F. (2000). The copper losses in
the slags from the El Teniente process. Canadian
Metallurgical Quarterly, 39(3), 281-290. https://doi.org/10.1
179/cmq.2000.39.3.281
[12]. Indian Roads Congress. (2013). MORTH
Specifications for road and bridge works (5th Revision).
Ministry of Road Transport & Highways. New Delhi, India:
Jain Book Agency.
[13]. Infra Bazaar (n.d). Global Demand for Construction
Aggregates. Retrieved from https://www.infrabazaar.com
/blog/Global-Demand-for-Construction-Aggregates/116
[14]. Junwei, S., Shenglei, F., Xiong, R., Ouyang, Y., Qingli,
Z., Jielu, Z., & Zhang, C. (2020). Mechanical properties,
pozzolanic activity and volume stability of copper slagfilled
cementitious materials. Materials Science, 26(2), 218-
224. https://doi. org/10.5755/j01.ms.26.2.21447
[15]. Kıyak, B., Özer, A., Altundoǧan, H. S., Erdem, M., &
Tümen, F. (1999). Cr (VI) reduction in aqueous solutions by
using copper smelter slag. Waste Management, 19(5),
333-338. https://doi.org/10.1016/S0956-053X(99)00141-5
[16]. Liu, J., Guo, R., Shi, P., & Huang, L. (2019). Hydration
mechanisms of composite binders containing copper slag
at different temperatures. Journal of Thermal Analysis and
Calorimetry, 137(6), 1919-1928. https://doi.org/10.1007/s1
0973-019-08116-9
[17]. Modarres, A., & Bengar, P. A. (2017). Investigating the
indirect tensile stiffness, toughness and fatigue life of hot mix asphalt containing copper slag powder. International
Journal of Pavement Engineering, 20(8), 977-985. https://
doi.org/10.1080/10298436.2017.1373390
[18]. Nazer, A., Payá, J., Borrachero, M. V., & Monzó, J.
(2016). Use of ancient copper slags in Portland cement
and alkali activated cement matrices. Journal of
Environmental Management, 167, 115-123. https://doi.
org/10.1016/j.jenvman.2015.11.024
[19]. Oluwasola, E. A., Hainin, M. R., & Aziz, M. M. A. (2015).
Evaluation of asphalt mixtures incorporating electric arc
furnace steel slag and copper mine tailings for road
construction. Transportation Geotechnics, 2, 47-55. https://
doi.org/10.1016/j.trgeo.2014.09.004
[20]. Prem, P. R., Verma, M., & Ambily, P. S. (2018).
Sustainable cleaner production of concrete with high
volume copper slag. Journal of Cleaner Production, 193,
43-58. https://doi.org/10.1016/j.jclepro.2018.04.245
[21]. Pundhir, N. K. S., Kamaraj, C., & Nanda, P. K. (2005).
Use of copper slag as construction material in bituminous
pavements. Journal of Scientific and Industrial Research
(JSIR), 64(12), 997-1002. https://hdl.handle.net/12345678
9/5383
[22]. Raposeiras, A. C., Movilla-Quesada, D., Bilbao-
Novoa, R., Cifuentes, C., Ferrer-Norambuena, G., &
Castro-Fresno, D. (2018). The use of copper slags as an
aggregate replacement in asphalt mixes with RAP:
physical–chemical and mechanical behavioural analysis.
Construction and Building Materials, 190, 427-438. https://
doi.org/10.1016/j.conbuildmat.2018.09.120
[23]. Shahu, J. T., Patel, S., & Senapati, A. (2013).
Engineering properties of copper slag–fly ash–dolime mix
and its utilization in the base course of flexible pavements.
Journal of Materials in Civil Engineering, 25(12), 1871-1879.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000756
[24]. Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of
copper slag in cement and concrete. Resources,
Conservation and Recycling, 52(10), 1115-1120. https://
doi.org/10.1016/j.resconrec.2008.06.008
[25]. UEPG European Aggregates Association. (2018).
Estimates of Aggregates Production Data, UEPG Annual
Review 2017-2018. Retrieved from https://www.aniet.pt/ fotos/editor2/uepg_annual_review_2017-2018_003_.pdf
[26]. Yildirim, I. Z., & Prezzi, M. (2011). Chemical,
mineralogical, and morphological properties of steel slag.
Advances in Civil Engineering. https://doi.org/10.1155/201
1/463638
[27]. Zain, M. F. M., Islam, M. N., Radin, S. S., & Yap, S. G.
(2004). Cement-based solidification for the safe disposal of
blasted copper slag. Cement and Concrete Composites, 26(7), 845-851. https://doi.org/10.1016/j.cemconcomp.
2003.08.002
[28]. Ziari, H., Moniri, A., Imaninasab, R., & Nakhaei, M.
(2017). Effect of copper slag on performance of warm mix
asphalt. International Journal of Pavement Engineering,
20(7), 775-781. https://doi.org/10.1080/10298436.2017.
1339884