References
[1]. Achara, B. E., Mohammed, B. S., & Liew, M. S. (2019).
Bond behaviour of nano-silica-modified self-compacting
engineered cementitious composite using response
surface methodology. Construction and Building
Materials, 224, 796-814. https://doi.org/10.1016/j.conbu
ildmat.2019. 07.115
[2]. Amir, H., Wani, & Bhawna, E. (2017). Effect of micro
steel fibre on properties of concrete. International Journal
of Recent Engineering Research and Development
(IJRERD), 02(11), 60-63.
[3]. Asif, M., & Mehta, G. (2019). Experimental study on self
compacting concrete using nano silica. Fibres, 7(4), 1–11.
https://doi.org/10.3390/fib7040036
[4]. Beigi, M. H., Berenjian, J., Omran, O. L., Nik, A. S., &
Nikbin, I. M. (2013). An experimental survey on combined
effects of fibers and nanosilica on the mechanical,
rheological, and durability properties of self-compacting
concrete. Materials & Design, 50, 1019-1029. https://doi.o
rg/10.1016/j.matdes.2013.03.046
[5]. Ben Aicha, M., Burtschell, Y., Alaoui, A. H., El Harrouni,
K., & Jalbaud, O. (2017). Correlation between bleeding
and rheological characteristics of self-compacting
concrete. Journal of Materials in Civil Engineering, 29(6).
[6]. Bureau of Indian Standard. (1959). Method of Tests for
Strength of Concrete (IS: 516). Bureau of Indian Standard,
New Delhi, India.
[7]. Bureau of Indian Standard. (1963). Methods of test for
aggregates for concrete Part 3 Specific gravity, density,
voids, absorption and bulking (IS: 2386-3). Bureau of Indian
Standard, New Delhi, India.
[8]. Bureau of Indian Standard. (1970). Coarse and Fine
Aggregate for Concrete - Specification (IS: 383). Bureau of
Indian Standard, New Delhi, India.
[9]. Bureau of Indian Standard. (1987). Specifications for
53 grade ordinary Portland cement (IS: 12269). Bureau of
Indian Standard, New Delhi, India.
[10]. Bureau of Indian Standard. (1998). Methods of
physical tests for hydraulic cement. Part 4: Determination of
consistency of standard cement paste (IS: 4031-4). Bureau
of Indian Standard, New Delhi, India.
[11]. Faherty, K.F. (1972). An Analysis of a Reinforced and a
Prestressed Concrete Beam by Finite Element Method,
(Doctoral Dissertation), University of Iowa, Iowa City.
[12]. Güneyisi, E., Gesoglu, M., Al-Goody, A., & İpek, S.
(2015). Fresh and rheological behavior of nano-silica and
fly ash blended self-compacting concrete. Construction
and Building Materials, 95, 29-44. https://doi.org/10.1016/j.
conbuildmat.2015.07.142
[13]. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S.
B., & Karimzade, K. (2017). Simplified damage plasticity
model for concrete. Structural Engineering International,
27(1), 68-78. https://doi.org/10.2749/101686616X1081
[14]. Hameed, M. H., Abbas, Z. K., & Al-Ahmed, A. H. A.
(2020, January). Fresh and hardened properties of nano
self-compacting concrete with micro and nano silica. In
IOP Conference Series: Materials Science and Engineering
(Vol. 671, No. 1, p. 012079). IOP Publishing. https://doi.org/1
0.10 88/1757-899X/671/1/012079
[15]. Jalal, M., Pouladkhan, A., Harandi, O. F., & Jafari, D.
(2015). Comparative study on effects of Class F fly ash,
nano silica and silica fume on properties of high
performance self compacting concrete. Construction
and Building Materials, 94, 90-104. https://doi.org/10.1016
/j.conbuildmat.2015.07.001
[16]. Khaloo, A., Raisi, E. M., Hosseini, P., & Tahsiri, H. (2014).
Mechanical performance of self-compacting concrete
reinforced with steel fibers. Construction and Building Materials, 51, 179-186. https://doi.org/10.1016/j.conbuildmat.2013.10.054
[17]. Mahmod, M., Hanoon, A. N., & Abed, H. J. (2018).
Flexural behavior of self-compacting concrete beams
strengthened with steel fiber reinforcement. Journal of
Building Engineering, 16, 228-237. https://doi.org/10.1016/
j.jobe.2018.01.006
[18]. Manzi, S., Mazzotti, C., & Bignozzi, M. C. (2017). Selfcompacting
concrete with recycled concrete aggregate:
Study of the long-term properties. Construction and
Building Materials, 157, 582-590. https://doi.org/10.1016/j.
conbuild mat.2017.09.129
[19]. Nieto, D., Dapena, E., Alaejos, P., Olmedo, J., & Pérez,
D. (2019). Properties of self-compacting concrete
prepared with coarse recycled concrete aggregates and
different water: Cement ratios. Journal of Materials in Civil
Engineering, 31(2), 78-82.
[20]. Okeh, C. A., Begg, D. W., Barnett, S. J., & Nanos, N.
(2019). Behaviour of hybrid steel fibre reinforced self
compacting concrete using innovative hooked-end steel
fibres under tensile stress. Construction and Building
Materials, 202, 753-761. https://doi.org/10.1016/j.conbuild
mat.2018.12.067
[21]. Paul, T., Bida, H., Kiron, B., & Varghese, M. (2016).
Experimental study on self compacting concrete with steel
fibre reinforcement. International Journal of Science,
Engineering and Technology Research, 5(4), 1166–1169.
[22]. Rajhans, P., Panda, S. K., & Nayak, S. (2018).
Sustainable self compacting concrete from C&D waste by
improving the microstructures of concrete ITZ. Construction
and Building Materials, 163, 557-570.
[23]. Subramanian, S., & Nadu, T. (2014). Self-compacting
concrete with micro and nano-silica silica. International
Journal of Innovative Science Engineering and
Technology, 3(4), 11239–11244.
[24]. Tavakoli, H. R., Mahmoudi, S., Goltabar, A. R., & Jalali,
P. (2017). Experimental evaluation of the effects of reverse
cyclic loading rate on the mechanical behavior of
reinforced SCC beams. Construction and Building
Materials, 131, 254-266.
[25]. Uyanık, G. K., & Güler, N. (2013). A study on multiple
linear regression analysis. Procedia-Social and Behavioral
Sciences, 106, 234-240. https://doi.org/10.1016/j.sbspro.
2013.12.027
[26]. Yaw, L. T., BanaheneOsei, J., & Adom-Asamoah, M.
(2017). On the non-linear finite element modelling of selfcompacting
concrete beams. Journal of Structural and
Transportation Studies, 2(2), 1-18.
[27]. You, Z., Chen, X., & Dong, S. (2011). Ductility and
strength of hybrid fiber reinforced self-consolidating
concrete beam with low reinforcement ratios. Systems
Engineering Procedia, 1, 28-34. https://doi.org/10.1016/j.s
epro.2011.08.006