A Review on Textile Reinforced Mortar and Fiber Reinforced Polymer Composites for Structural Applications

H. R. Priyanka*, Madhavi K.**
*-** Department of Civil Engineering, RV College of Engineering, Bengaluru, India.
Periodicity:March - May'2020
DOI : https://doi.org/10.26634/jce.10.2.17363

Abstract

Fibre reinforced composites are being used to strengthen the structural components. Fibre Reinforced Polymer which consists of organic matrices are widely used for structural retrofitting due to its high strength to weight ratio. The use of fibre reinforced cementitious mortar (FRCM) is gaining popularity due to their ability to evade the problems associated with fibre reinforced polymer (FRP) systems. The advantages of FRCM are (i) mortar used in FRCM system is more compatible with the concrete and masonry substrate compared to epoxy; (ii) high thermal conductivity; (iii) fire resistance and (iv) can be applied on wet surfaces. Recycled materials can be incorporated in FRCM systems leading to a sustainable product with less impact on the environment. Therefore, the use of FRCM is becoming attractive for retrofitting of structures than FRP which are being widely used. This paper addresses the application of textile reinforced mortar (TRM) composites over FRP in strengthening of structural members.

Keywords

Textile Reinforced Mortar, Fiber Reinforced Polymer, Fibre, Composite.

How to Cite this Article?

Priyanka, H. R., and Madhavi, K. (2020). A Review on Textile Reinforced Mortar and Fiber Reinforced Polymer Composites for Structural Applications. i-manager's Journal on Civil Engineering, 10(2), 34-46. https://doi.org/10.26634/jce.10.2.17363

References

[1]. Achudhan, Deepavarsa, Vandhana & Shalini. (2019). strengthening and retrofitting of RC beams using fiber reinforced polymers. Materials Today: Proceedings,16(2), 361–366. https://doi.org/10.1016/j.matpr.2019.05.102
[2]. Andiç-Çakir, Ö., Sarikanat, M., Tüfekçi, H. B., Demirci, C., & Erdoğan, Ü. H. (2014). Physical and mechanical properties of randomly oriented coir fiber–cementitious composites. Composites Part B: Engineering, 61, 49-54. https://doi.org/10.1016/j.compositesb.2014.01.029
[3]. Arpitha, G. R., & Yogesha, B. (2017). An overview on mechanical property evaluation of natural Fiber Reinforced Polymer. Materials Today: Proceedings, 4(2), 2755-2760. https://doi.org/10.1016/j.matpr.2017.02.153
[4]. Askouni, P. D., & Papanicolaou, C. G. (2017). Experimental investigation of bond between glass textile reinforced mortar overlays and masonry: The effect of bond length. Materials and Structures, 50(2), 164–170. https://doi.org/10.1617/s11527-017-1033-7
[5]. Awani, O., El-Maaddawy, T., & Ismail, N. (2017). Fabricreinforced cementitious matrix: A promising strengthening technique for concrete structures. Construction and Building Materials, 132, 94-111. https://doi.org/10.1016/j. conbuildmat.2016.11.125
[6]. Azam, R., Soudki, K., West, J. S., & Noël, M. (2018). Shear strengthening of RC deep beams with cementbased composites. Engineering Structures, 172, 929-937. https://doi.org/10.1016/j.engstruct.2018.06.085
[7]. Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos, J. F., Lesko, J. J., Machida, A., Rizkalla, S. H.,& Triantafillou, T. C. (2002). Fiber reinforced polymer composites for construction—State-of-the-art review. Journal of Composites for Construction, 6(2), 73-87. https://doi.org/ 10.1061/(ASCE)1090-0268(2002)6:2(73)
[8]. Balachandar, M., Ramnath, B. V., Barath, R., & Sankar, S. B. (2019). Mechanical characterization of natural fiber polymer composites. Materials Today: Proceedings, 16, 1006-1012. https://doi.org/10.1016/j.matpr.2019.05.189
[9]. Bernat-Maso, E., Escrig, C., Aranha, C. A., & Gil, L. (2014). Experimental assessment of Textile Reinforced Sprayed Mortar strengthening system for brickwork wallettes. Construction and Building Materials, 50, 226- 236. https://doi.org/10.1016/j.conbuildmat.2013.09.031
[10]. Bodaghi, M., Costa, R., Gomes, R., Silva, J., Correia, N., & Silva, F. (2020). Experimental comparative study of the variants of high-temperature vacuum-assisted resin transfer moulding. Composites Part A: Applied Science and Manufacturing,19, 835–866. https://doi.org/10.1016/j. compositesa.2019.105708
[11]. Caggegi, C., Lanoye, E., Djama, K., Bassil, A., & Gabor, A. (2017). Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios. Composites Part B: Engineering, 130, 90-102. https://doi.org/10.1016/j.compositesb.2017.07.027
[12]. Cascardi, A., Longo, F., Micelli, F., & Aiello, M. A. (2017). Compressive strength of confined column with fiber reinforced mortar (FRM): New design-oriented-models. Construction and Building Materials, 156, 387-401. https://doi.org/10.1016/j.conbuildmat.2017.09.004
[13]. Chandramohan, D., & Kumar, A. J. P. (2017). Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data in Brief, 13, 460-468. https://doi.org/10.1016/j.dib.2017.06.020
[14]. Chen, J. F., &Teng, J. G. (2003). Hear capacity of FRPstrengthened RC beams: FRP debonding. Construction and Building Materials, 17(1), 27-41. https://doi.org/10. 1016/S0950-0618(02)00091-0
[15]. Cheon, J., Lee, M., & Kim, M. (2020). Study on the stab resistance mechanism and performance of the carbon, glass and aramid Fiber Reinforced Polymer and hybrid composites. Composite Structures, 234, 0263–0268. https://doi.org/10.1016/j.compstruct.2019.111690
[16]. Codispoti, R., Oliveira, D. V., Olivito, R. S., Lourenço, P. B., & Fangueiro, R. (2015). Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. Composites Part B: Engineering, 77, 74-83. https://doi.org/10.1016/j.compositesb.2015.03.021
[17]. Colombo, I. G., Colombo, M., & di Prisco, M. (2015). Bending behaviour of Textile Reinforced Concrete sandwich beams. Construction and Building Materials, 95, 675-685. https://doi.org/10.1016/j.conbuildmat.2015. 07.169
[18]. Contamine, R., Larbi, A. S., & Hamelin, P. (2013). Identifying the contributing mechanisms of textile reinforced concrete (TRC) in the case of shear repairing damaged and reinforced concrete beams. Engineering Structures, 46, 447-458. https://doi.org/10.1016/j.engstruct. 2012.07.024
[19]. Dalalbashi, A., Ghiassi, B., Oliveira, D. V., & Freitas, A. (2018). Fiber-to-mortar bond behavior in TRM composites: Effect of embedded length and fiber configuration. Composites Part B: Engineering, 152, 43-57. https://doi. org/10.1016/j.compositesb.2018.06.014
[20]. Das, D., Dubey, O. P., Sharma, M., Nayak, R. K., & Samal, C. (2019). Mechanical properties and abrasion behaviour of glass fiber reinforced polymer composites–A case study. Materials Today: Proceedings, 19, 506-511. https://doi.org/10.1016/j.matpr.2019.07.644
[21]. de Carvalho Bello, C. B., Boem, I., Cecchi, A., Gattesco, N., & Oliveira, D. V. (2019). Experimental tests for the characterization of sisal fiber reinforced cementitious matrix for strengthening masonry structures. Construction and Building Materials, 219, 44-55. https://doi.org/10. 1016/j.conbuildmat.2019.05.168
[22]. De Felice, G., De Santis, S., Garmendia, L., Ghiassi, B., Larrinaga, P., Lourenço, P. B., Oliveira, D. V., Paolacci, F.,& Papanicolaou, C. G. (2014). Mortar-based systems for externally bonded strengthening of masonry. Materials and Structures, 47(12), 2021-2037. https://doi.org/10.1617/ s11527-014-0360-1
[23]. De Munck, M., El Kadi, M., Tsangouri, E., Vervloet, J., Verbruggen, S., Wastiels, J., Tysmans, T.,& Remy, O. (2018). Influence of environmental loading on the tensile and cracking behaviour of textile reinforced cementitious composites. Construction and Building Materials, 181, 325-334. https://doi.org/10.1016/j.conbuildmat.2018.06. 045
[24]. De Munck, M., Tysmans, T., El Kadi, M., Wastiels, J., Vervloet, J., Kapsalis, P., & Remy, O. (2019). Durability of sandwich beams with textile reinforced cementitious composite faces. Construction and Building Materials, 229,832–842. https://doi.org/10.1016/j.conbuildmat. 2019.116832
[25]. De Santis, S., & de Felice, G. (2015). Tensile behaviour of mortar-based composites for externally bonded reinforcement systems. Composites Part B: Engineering, 68, 401-413. https://doi.org/10.1016/j.compositesb.2014. 09.011
[26]. De Santis, S., Carozzi, F. G., de Felice, G., & Poggi, C. (2017). Test methods for textile reinforced mortar systems. Composites Part B: Engineering, 127, 121-132. https:// doi.org/10.1016/j.compositesb.2017.03.016
[27]. Elsanadedy, H. M., Almusallam, T. H., Alsayed, S. H., & Al-Salloum, Y. A. (2013). Flexural strengthening of RC beams using textile reinforced mortar–Experimental and numerical study. Composite Structures, 97, 40-55. https:// doi.org/10.1016/j.compstruct.2012.09.053
[28]. Escrig, C., Gil, L., Bernat-Maso, E., & Puigvert, F. (2015). Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar. Construction and Building Materials, 83, 248-260. https://doi.org/10.1016/j.conbuildmat. 2015.03.013
[29]. Guo, F., Al-Saadi, S., Raman, R. S., & Zhao, X. L. (2018). Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment. Corrosion Science, 141, 1-13. https://doi.org/10.1016/j. corsci.2018.06.022
[30]. Holčapek, O., Vogel, F., & Reiterman, P. (2017). Using of textile reinforced concrete wrapping for strengthening of masonry columns with modified cross-section shape. Procedia Engineering, 195, 62-66. https://doi.org/10. 1016/j.proeng.2017.04.524
[31]. Irshidat, M. R., & Al-Shannaq, A. (2018). Using textile reinforced mortar modified with carbon nano tubes to improve flexural performance of RC beams. Composite Structures, 200, 127-134. https://doi.org/10.1016/j. compstruct.2018.05.088
[32]. Ismail, N., El-Maaddawy, T., Khattak, N., & Najmal, A. (2018). In-plane shear strength improvement of hollow concrete masonry panels using a fabric-reinforced cementitious matrix. Journal of Composites for Construction, 22(2), 1-13. https://doi.org/10.1061/(ASCE) CC.1943-5614.0000835
[33]. Jawaid, M., Thariq, M., & Saba, N. (2018). Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (1st Edition). Woodhead Publishing.
[34]. Jin, F. L., Li, X., & Park, S. J. (2015). Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11. https://doi.org/10. 1016/j.jiec.2015.03.026
[35]. Khan, G. A., Terano, M., Gafur, M. A., & Alam, M. S. (2016). Studies on the mechanical properties of woven jute fabric reinforced poly (l-lactic acid) composites. Journal of King Saud University-Engineering Sciences, 28(1), 69-74. https://doi.org/10.1016/j.jksues.2013.12.002
[36]. Kouris, L. A. S., & Triantafillou, T. C. (2018). State-of-theart on strengthening of masonry structures with textile reinforced mortar (TRM). Construction and Building Materials, 188, 1221-1233. https://doi.org/10.1016/j. conbuildmat.2018.08.039
[37]. Koutas, L. N., Tetta, Z., Bournas, D. A., & Triantafillou, T. C. (2019). Strengthening of concrete structures with textile reinforced mortars: State-of-the-art review. Journal of Composites for Construction, 23(1), 23–42. https://doi.org/ 10.1061/(ASCE)CC.1943-5614.0000882
[38]. Larbi, A. S., Contamine, R., Ferrier, E., & Hamelin, P. (2010). Shear strengthening of RC beams with textile reinforced concrete (TRC) plate. Construction and Building Materials, 24(10), 1928-1936. https://doi.org/10.1016/j. conbuildmat.2010.04.008
[39]. Larrinaga, P., Chastre, C., Biscaia, H. C., & San-José, J. T. (2014). Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress. Materials & Design, 55, 66-74. https://doi. org/10.1016/j.matdes.2013.09.050
[40]. Larrinaga, P., Garmendia, L., Piñero, I., & San-José, J. T. (2020). Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG). Construction and Building Materials, 235, 790–803. https://doi.org/10.1016/j. conbuildmat.2019.117790
[41]. Lokesh, P., Kumari, T. S., Gopi, R., & Loganathan, G. B. (2020). A study on mechanical properties of bamboo Fiber Reinforced Polymer composite. Materials Today: Proceedings, 22, 897-903. https://doi.org/10.1016/j.matpr. 2019.11.100
[42]. Mak, K., & Fam, A. (2019). Freeze-thaw cycling effect on tensile properties of unidirectional flax Fiber Reinforced Polymer. Composites Part B: Engineering, 174, 106960. https://doi.org/10.1016/j.compositesb.2019.106960
[43]. Mohseni, E., Khotbehsara, M. M., Naseri, F., Monazami, M., & Sarker, P. (2016). Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina. Construction and Building Materials, 111, 429-439. https://doi.org/10.1016/j.conbuildmat.2016.02. 124
[44]. Murray, J. J., Robert, C., Gleich, K., McCarthy, E. D., & Brádaigh, C. M. Ó. (2020). Manufacturing of unidirectional stitched glass fabric reinforced polyamide 6 by thermoplastic resin transfer moulding. Materials & Design, 189, 512–524. https://doi.org/10.1016/j.matdes.2020. 108512
[45]. Ombres, L. (2012). Debonding analysis of reinforced concrete beams strengthened with fibre reinforced cementitious mortar. Engineering Fracture Mechanics, 81, 94-109. https://doi.org/10.1016/j.engfracmech.2011.06. 012
[46]. Ostrowski, K., Dudek, M., & Sadowski, Ł. (2020). Compressive behaviour of concrete-filled carbon fiberreinforced polymer steel composite tube columns made of high performance concrete. Composite Structures, 234, 111668. https://doi.org/10.1016/j.compstruct.2019. 111668
[47]. Pakravan, H. R., & Ozbakkaloglu, T. (2019). Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Construction and Building Materials, 207, 491-518. https://doi.org/10.1016/j.conbuil dmat.2019.02.078
[48]. Pani, P. R., Nayak, R. K., Routara, B. C., & Sekhar, P. C. (2019). Flexural and specific wear rate of seawater aged bamboo, jute and glass fiber reinforced polymer hybrid composites. Materials Today: Proceedings, 18, 3409-3414. https://doi.org/10.1016/j.matpr.2019.07.268
[49]. Pohoryles, D. A., & Bournas, D. A. (2020). Seismic retrofit of infilled RC frames with textile reinforced mortars: State-of-the-art review and analytical modelling. Composites Part B: Engineering, 183, 1359-1365. https:// doi.org/10.1016/j.compositesb.2019.107702
[50]. Ramu, P., Kumar, C. J., & Palanikumar, K. (2019). Mechanical Characteristics and Terminological Behavior Study on Natural Fiber Nano reinforced Polymer Composite–A Review. Materials Today: Proceedings, 16, 1287-1296. https://doi.org/10.1016/j.matpr.2019.05.226
[51]. Raoof, S. M., Koutas, L. N., & Bournas, D. A. (2017). Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams. Construction and Building Materials, 151, 279-291. https:// doi.org/10.1016/j.conbuildmat.2017.05.023
[52]. Roeder, M., Thiele, S., Hera, D., Pruss, C., Guenther, T., Osten, W., & Zimmermann, A. (2019). Fabrication of curved diffractive optical elements by means of laser direct writing, electroplating, and injection compression molding. Journal of Manufacturing Processes, 47, 402-409. https:// doi.org/10.1016/j.jmapro.2019.10.012
[53]. Sen, T., & Paul, A. (2015). Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP. International Journal of Sustainable Built Environment, 4(2), 248-264. https://doi.org/10.1016/j.ijsbe.2015.04.001
[54]. Sen, T., & Reddy, H. J. (2014). Flexural strengthening of RC beams using natural sisal and artificial carbon and glass fabric reinforced composite system. Sustainable Cities and Society, 10, 195-206. https://doi.org/10.1016/j.scs.2013. 09.003
[55]. Shalwan, A., & Yousif, B. F. (2013). In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design, 48, 14-24. https://doi.org/10.1016/j.matdes.2012.07.014
[56]. Siddika, A., Al Mamun, M. A., Alyousef, R., & Amran, Y. M. (2019). Strengthening of reinforced concrete beams by using fiber reinforced polymer composites: A review. Journal of Building Engineering, 25, 100798. https://doi. org/10.1016/j.jobe.2019.100798
[57]. Signorini, C., Nobili, A., Gonzalez, E. C., & Siligardi, C. (2018). Silica coating for interphase bond enhancement of carbon and AR-glass textile reinforced mortar (TRM). Composites Part B: Engineering, 141, 191-202. https://doi. org/10.1016/j.compositesb.2017.12.045
[58]. Triantafillou, T. C., & Papanicolaou, C. G. (2006). Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Materials and Structures, 39(1), 93-103. https://doi.org/10.1007/s11527- 005-9034-3
[59]. Zhang, H. Y., Yan, J., Kodur, V., & Cao, L. (2019). Mechanical behavior of concrete beams shear strengthened with textile reinforced geopolymer mortar. Engineering Structures, 196, 141–296. https://doi.org/10. 1016/j.engstruct.2019.109348
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.