References
[1]. Achudhan, Deepavarsa, Vandhana & Shalini. (2019).
strengthening and retrofitting of RC beams using fiber
reinforced polymers. Materials Today: Proceedings,16(2),
361–366. https://doi.org/10.1016/j.matpr.2019.05.102
[2]. Andiç-Çakir, Ö., Sarikanat, M., Tüfekçi, H. B., Demirci,
C., & Erdoğan, Ü. H. (2014). Physical and mechanical
properties of randomly oriented coir fiber–cementitious
composites. Composites Part B: Engineering, 61, 49-54.
https://doi.org/10.1016/j.compositesb.2014.01.029
[3]. Arpitha, G. R., & Yogesha, B. (2017). An overview on
mechanical property evaluation of natural Fiber
Reinforced Polymer. Materials Today: Proceedings, 4(2),
2755-2760. https://doi.org/10.1016/j.matpr.2017.02.153
[4]. Askouni, P. D., & Papanicolaou, C. G. (2017).
Experimental investigation of bond between glass textile
reinforced mortar overlays and masonry: The effect of
bond length. Materials and Structures, 50(2), 164–170.
https://doi.org/10.1617/s11527-017-1033-7
[5]. Awani, O., El-Maaddawy, T., & Ismail, N. (2017). Fabricreinforced
cementitious matrix: A promising strengthening
technique for concrete structures. Construction and
Building Materials, 132, 94-111. https://doi.org/10.1016/j.
conbuildmat.2016.11.125
[6]. Azam, R., Soudki, K., West, J. S., & Noël, M. (2018).
Shear strengthening of RC deep beams with cementbased
composites. Engineering Structures, 172, 929-937.
https://doi.org/10.1016/j.engstruct.2018.06.085
[7]. Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos,
J. F., Lesko, J. J., Machida, A., Rizkalla, S. H.,& Triantafillou, T.
C. (2002). Fiber reinforced polymer composites for construction—State-of-the-art review. Journal of
Composites for Construction, 6(2), 73-87. https://doi.org/
10.1061/(ASCE)1090-0268(2002)6:2(73)
[8]. Balachandar, M., Ramnath, B. V., Barath, R., & Sankar,
S. B. (2019). Mechanical characterization of natural fiber
polymer composites. Materials Today: Proceedings, 16,
1006-1012. https://doi.org/10.1016/j.matpr.2019.05.189
[9]. Bernat-Maso, E., Escrig, C., Aranha, C. A., & Gil, L.
(2014). Experimental assessment of Textile Reinforced
Sprayed Mortar strengthening system for brickwork
wallettes. Construction and Building Materials, 50, 226-
236. https://doi.org/10.1016/j.conbuildmat.2013.09.031
[10]. Bodaghi, M., Costa, R., Gomes, R., Silva, J., Correia,
N., & Silva, F. (2020). Experimental comparative study of the
variants of high-temperature vacuum-assisted resin
transfer moulding. Composites Part A: Applied Science
and Manufacturing,19, 835–866. https://doi.org/10.1016/j.
compositesa.2019.105708
[11]. Caggegi, C., Lanoye, E., Djama, K., Bassil, A., &
Gabor, A. (2017). Tensile behaviour of a basalt TRM
strengthening system: Influence of mortar and reinforcing
textile ratios. Composites Part B: Engineering, 130, 90-102.
https://doi.org/10.1016/j.compositesb.2017.07.027
[12]. Cascardi, A., Longo, F., Micelli, F., & Aiello, M. A.
(2017). Compressive strength of confined column with fiber
reinforced mortar (FRM): New design-oriented-models.
Construction and Building Materials, 156, 387-401.
https://doi.org/10.1016/j.conbuildmat.2017.09.004
[13]. Chandramohan, D., & Kumar, A. J. P. (2017).
Experimental data on the properties of natural fiber particle
reinforced polymer composite material. Data in Brief, 13,
460-468. https://doi.org/10.1016/j.dib.2017.06.020
[14]. Chen, J. F., &Teng, J. G. (2003). Hear capacity of FRPstrengthened
RC beams: FRP debonding. Construction
and Building Materials, 17(1), 27-41. https://doi.org/10.
1016/S0950-0618(02)00091-0
[15]. Cheon, J., Lee, M., & Kim, M. (2020). Study on the stab
resistance mechanism and performance of the carbon,
glass and aramid Fiber Reinforced Polymer and hybrid
composites. Composite Structures, 234, 0263–0268.
https://doi.org/10.1016/j.compstruct.2019.111690
[16]. Codispoti, R., Oliveira, D. V., Olivito, R. S., Lourenço, P.
B., & Fangueiro, R. (2015). Mechanical performance of
natural fiber-reinforced composites for the strengthening of
masonry. Composites Part B: Engineering, 77, 74-83.
https://doi.org/10.1016/j.compositesb.2015.03.021
[17]. Colombo, I. G., Colombo, M., & di Prisco, M. (2015).
Bending behaviour of Textile Reinforced Concrete
sandwich beams. Construction and Building Materials, 95,
675-685. https://doi.org/10.1016/j.conbuildmat.2015.
07.169
[18]. Contamine, R., Larbi, A. S., & Hamelin, P. (2013).
Identifying the contributing mechanisms of textile
reinforced concrete (TRC) in the case of shear repairing
damaged and reinforced concrete beams. Engineering
Structures, 46, 447-458. https://doi.org/10.1016/j.engstruct.
2012.07.024
[19]. Dalalbashi, A., Ghiassi, B., Oliveira, D. V., & Freitas, A.
(2018). Fiber-to-mortar bond behavior in TRM composites:
Effect of embedded length and fiber configuration.
Composites Part B: Engineering, 152, 43-57. https://doi.
org/10.1016/j.compositesb.2018.06.014
[20]. Das, D., Dubey, O. P., Sharma, M., Nayak, R. K., &
Samal, C. (2019). Mechanical properties and abrasion
behaviour of glass fiber reinforced polymer composites–A
case study. Materials Today: Proceedings, 19, 506-511.
https://doi.org/10.1016/j.matpr.2019.07.644
[21]. de Carvalho Bello, C. B., Boem, I., Cecchi, A.,
Gattesco, N., & Oliveira, D. V. (2019). Experimental tests for
the characterization of sisal fiber reinforced cementitious
matrix for strengthening masonry structures. Construction
and Building Materials, 219, 44-55. https://doi.org/10.
1016/j.conbuildmat.2019.05.168
[22]. De Felice, G., De Santis, S., Garmendia, L., Ghiassi, B.,
Larrinaga, P., Lourenço, P. B., Oliveira, D. V., Paolacci, F.,&
Papanicolaou, C. G. (2014). Mortar-based systems for
externally bonded strengthening of masonry. Materials
and Structures, 47(12), 2021-2037. https://doi.org/10.1617/
s11527-014-0360-1
[23]. De Munck, M., El Kadi, M., Tsangouri, E., Vervloet, J.,
Verbruggen, S., Wastiels, J., Tysmans, T.,& Remy, O. (2018).
Influence of environmental loading on the tensile and cracking behaviour of textile reinforced cementitious
composites. Construction and Building Materials, 181,
325-334. https://doi.org/10.1016/j.conbuildmat.2018.06.
045
[24]. De Munck, M., Tysmans, T., El Kadi, M., Wastiels, J.,
Vervloet, J., Kapsalis, P., & Remy, O. (2019). Durability of
sandwich beams with textile reinforced cementitious
composite faces. Construction and Building Materials,
229,832–842. https://doi.org/10.1016/j.conbuildmat.
2019.116832
[25]. De Santis, S., & de Felice, G. (2015). Tensile behaviour
of mortar-based composites for externally bonded
reinforcement systems. Composites Part B: Engineering,
68, 401-413. https://doi.org/10.1016/j.compositesb.2014.
09.011
[26]. De Santis, S., Carozzi, F. G., de Felice, G., & Poggi, C.
(2017). Test methods for textile reinforced mortar systems.
Composites Part B: Engineering, 127, 121-132. https://
doi.org/10.1016/j.compositesb.2017.03.016
[27]. Elsanadedy, H. M., Almusallam, T. H., Alsayed, S. H., &
Al-Salloum, Y. A. (2013). Flexural strengthening of RC
beams using textile reinforced mortar–Experimental and
numerical study. Composite Structures, 97, 40-55. https://
doi.org/10.1016/j.compstruct.2012.09.053
[28]. Escrig, C., Gil, L., Bernat-Maso, E., & Puigvert, F.
(2015). Experimental and analytical study of reinforced
concrete beams shear strengthened with different types of
textile-reinforced mortar. Construction and Building Materials,
83, 248-260. https://doi.org/10.1016/j.conbuildmat.
2015.03.013
[29]. Guo, F., Al-Saadi, S., Raman, R. S., & Zhao, X. L. (2018).
Durability of fiber reinforced polymer (FRP) in simulated
seawater sea sand concrete (SWSSC) environment.
Corrosion Science, 141, 1-13. https://doi.org/10.1016/j.
corsci.2018.06.022
[30]. Holčapek, O., Vogel, F., & Reiterman, P. (2017). Using
of textile reinforced concrete wrapping for strengthening of
masonry columns with modified cross-section shape.
Procedia Engineering, 195, 62-66. https://doi.org/10.
1016/j.proeng.2017.04.524
[31]. Irshidat, M. R., & Al-Shannaq, A. (2018). Using textile reinforced mortar modified with carbon nano tubes to
improve flexural performance of RC beams. Composite
Structures, 200, 127-134. https://doi.org/10.1016/j.
compstruct.2018.05.088
[32]. Ismail, N., El-Maaddawy, T., Khattak, N., & Najmal, A.
(2018). In-plane shear strength improvement of hollow
concrete masonry panels using a fabric-reinforced
cementitious matrix. Journal of Composites for
Construction, 22(2), 1-13. https://doi.org/10.1061/(ASCE)
CC.1943-5614.0000835
[33]. Jawaid, M., Thariq, M., & Saba, N. (2018). Structural
Health Monitoring of Biocomposites, Fibre-Reinforced
Composites and Hybrid Composites (1st Edition).
Woodhead Publishing.
[34]. Jin, F. L., Li, X., & Park, S. J. (2015). Synthesis and
application of epoxy resins: A review. Journal of Industrial
and Engineering Chemistry, 29, 1-11. https://doi.org/10.
1016/j.jiec.2015.03.026
[35]. Khan, G. A., Terano, M., Gafur, M. A., & Alam, M. S.
(2016). Studies on the mechanical properties of woven jute
fabric reinforced poly (l-lactic acid) composites. Journal of
King Saud University-Engineering Sciences, 28(1), 69-74.
https://doi.org/10.1016/j.jksues.2013.12.002
[36]. Kouris, L. A. S., & Triantafillou, T. C. (2018). State-of-theart
on strengthening of masonry structures with textile
reinforced mortar (TRM). Construction and Building
Materials, 188, 1221-1233. https://doi.org/10.1016/j.
conbuildmat.2018.08.039
[37]. Koutas, L. N., Tetta, Z., Bournas, D. A., & Triantafillou, T.
C. (2019). Strengthening of concrete structures with textile
reinforced mortars: State-of-the-art review. Journal of
Composites for Construction, 23(1), 23–42. https://doi.org/
10.1061/(ASCE)CC.1943-5614.0000882
[38]. Larbi, A. S., Contamine, R., Ferrier, E., & Hamelin, P.
(2010). Shear strengthening of RC beams with textile
reinforced concrete (TRC) plate. Construction and Building
Materials, 24(10), 1928-1936. https://doi.org/10.1016/j.
conbuildmat.2010.04.008
[39]. Larrinaga, P., Chastre, C., Biscaia, H. C., & San-José,
J. T. (2014). Experimental and numerical modeling of
basalt textile reinforced mortar behavior under uniaxial tensile stress. Materials & Design, 55, 66-74. https://doi.
org/10.1016/j.matdes.2013.09.050
[40]. Larrinaga, P., Garmendia, L., Piñero, I., & San-José, J.
T. (2020). Flexural strengthening of low-grade reinforced
concrete beams with compatible composite material:
Steel Reinforced Grout (SRG). Construction and Building
Materials, 235, 790–803. https://doi.org/10.1016/j.
conbuildmat.2019.117790
[41]. Lokesh, P., Kumari, T. S., Gopi, R., & Loganathan, G. B.
(2020). A study on mechanical properties of bamboo Fiber
Reinforced Polymer composite. Materials Today:
Proceedings, 22, 897-903. https://doi.org/10.1016/j.matpr.
2019.11.100
[42]. Mak, K., & Fam, A. (2019). Freeze-thaw cycling effect
on tensile properties of unidirectional flax Fiber Reinforced
Polymer. Composites Part B: Engineering, 174, 106960.
https://doi.org/10.1016/j.compositesb.2019.106960
[43]. Mohseni, E., Khotbehsara, M. M., Naseri, F.,
Monazami, M., & Sarker, P. (2016). Polypropylene fiber
reinforced cement mortars containing rice husk ash and
nano-alumina. Construction and Building Materials, 111,
429-439. https://doi.org/10.1016/j.conbuildmat.2016.02.
124
[44]. Murray, J. J., Robert, C., Gleich, K., McCarthy, E. D., &
Brádaigh, C. M. Ó. (2020). Manufacturing of unidirectional
stitched glass fabric reinforced polyamide 6 by
thermoplastic resin transfer moulding. Materials & Design,
189, 512–524. https://doi.org/10.1016/j.matdes.2020.
108512
[45]. Ombres, L. (2012). Debonding analysis of reinforced
concrete beams strengthened with fibre reinforced
cementitious mortar. Engineering Fracture Mechanics, 81,
94-109. https://doi.org/10.1016/j.engfracmech.2011.06.
012
[46]. Ostrowski, K., Dudek, M., & Sadowski, Ł. (2020).
Compressive behaviour of concrete-filled carbon fiberreinforced
polymer steel composite tube columns made
of high performance concrete. Composite Structures,
234, 111668. https://doi.org/10.1016/j.compstruct.2019.
111668
[47]. Pakravan, H. R., & Ozbakkaloglu, T. (2019). Synthetic fibers for cementitious composites: A critical and in-depth
review of recent advances. Construction and Building
Materials, 207, 491-518. https://doi.org/10.1016/j.conbuil
dmat.2019.02.078
[48]. Pani, P. R., Nayak, R. K., Routara, B. C., & Sekhar, P. C.
(2019). Flexural and specific wear rate of seawater aged
bamboo, jute and glass fiber reinforced polymer hybrid
composites. Materials Today: Proceedings, 18, 3409-3414.
https://doi.org/10.1016/j.matpr.2019.07.268
[49]. Pohoryles, D. A., & Bournas, D. A. (2020). Seismic
retrofit of infilled RC frames with textile reinforced mortars:
State-of-the-art review and analytical modelling.
Composites Part B: Engineering, 183, 1359-1365. https://
doi.org/10.1016/j.compositesb.2019.107702
[50]. Ramu, P., Kumar, C. J., & Palanikumar, K. (2019).
Mechanical Characteristics and Terminological Behavior
Study on Natural Fiber Nano reinforced Polymer
Composite–A Review. Materials Today: Proceedings, 16,
1287-1296. https://doi.org/10.1016/j.matpr.2019.05.226
[51]. Raoof, S. M., Koutas, L. N., & Bournas, D. A. (2017).
Textile-reinforced mortar (TRM) versus fibre-reinforced
polymers (FRP) in flexural strengthening of RC beams.
Construction and Building Materials, 151, 279-291. https://
doi.org/10.1016/j.conbuildmat.2017.05.023
[52]. Roeder, M., Thiele, S., Hera, D., Pruss, C., Guenther, T.,
Osten, W., & Zimmermann, A. (2019). Fabrication of curved
diffractive optical elements by means of laser direct writing,
electroplating, and injection compression molding.
Journal of Manufacturing Processes, 47, 402-409. https://
doi.org/10.1016/j.jmapro.2019.10.012
[53]. Sen, T., & Paul, A. (2015). Confining concrete with sisal
and jute FRP as alternatives for CFRP and GFRP.
International Journal of Sustainable Built Environment, 4(2),
248-264. https://doi.org/10.1016/j.ijsbe.2015.04.001
[54]. Sen, T., & Reddy, H. J. (2014). Flexural strengthening of
RC beams using natural sisal and artificial carbon and glass
fabric reinforced composite system. Sustainable Cities and
Society, 10, 195-206. https://doi.org/10.1016/j.scs.2013.
09.003
[55]. Shalwan, A., & Yousif, B. F. (2013). In state of art:
mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design,
48, 14-24. https://doi.org/10.1016/j.matdes.2012.07.014
[56]. Siddika, A., Al Mamun, M. A., Alyousef, R., & Amran, Y.
M. (2019). Strengthening of reinforced concrete beams by
using fiber reinforced polymer composites: A review.
Journal of Building Engineering, 25, 100798. https://doi.
org/10.1016/j.jobe.2019.100798
[57]. Signorini, C., Nobili, A., Gonzalez, E. C., & Siligardi, C.
(2018). Silica coating for interphase bond enhancement of
carbon and AR-glass textile reinforced mortar (TRM).
Composites Part B: Engineering, 141, 191-202. https://doi.
org/10.1016/j.compositesb.2017.12.045
[58]. Triantafillou, T. C., & Papanicolaou, C. G. (2006).
Shear strengthening of reinforced concrete members with
textile reinforced mortar (TRM) jackets. Materials and
Structures, 39(1), 93-103. https://doi.org/10.1007/s11527-
005-9034-3
[59]. Zhang, H. Y., Yan, J., Kodur, V., & Cao, L. (2019).
Mechanical behavior of concrete beams shear
strengthened with textile reinforced geopolymer mortar.
Engineering Structures, 196, 141–296. https://doi.org/10.
1016/j.engstruct.2019.109348