1 to 108 . The study shows a positive influence on the property of compressive strength of concrete, with an approximate increment of 18% to 22% in strength possibly due to densification of micro pores due to the growth of fibrous and calcium precipitation thereby strengthening the pore structure. The study also reveals the importance of culturing medium and selection of microorganisms, as revealed by the good results by using Klebsiella over Pseudomonas. In addition, concrete cubes were tested with Pseudomonas and Klebsiella at elevated temperature and there was no improvement in the strength possibly due to the mobility of microorganism.
">Bacterial concrete is a self-remediating biomaterial. Under favorable conditions, bacteria can precipitate calcite in concrete. Calcite precipitation plays an important role in mitigating the micro cracks there by increasing the long-term structural integrity and durability of concrete. The present study focuses on the addition of favorable microorganisms to improve the compressive strength of concrete. The microorganisms selected were Pseudomonas and Klebsiella, which microbiologically induce the mineral precipitation. Both the beneficial microorganisms were studied at different cell concentrations ranging from 101 to 108 . The study shows a positive influence on the property of compressive strength of concrete, with an approximate increment of 18% to 22% in strength possibly due to densification of micro pores due to the growth of fibrous and calcium precipitation thereby strengthening the pore structure. The study also reveals the importance of culturing medium and selection of microorganisms, as revealed by the good results by using Klebsiella over Pseudomonas. In addition, concrete cubes were tested with Pseudomonas and Klebsiella at elevated temperature and there was no improvement in the strength possibly due to the mobility of microorganism.