References
[1]. Al-Haddad, A. H. A., & Abed, A. A. (2016). Rut depth
detection for al-kut-Baghdad rural highway using ground
penetrating radar. Applied Research Journal, 2(7), 328-
335.
[2]. ASTM D4318. (2010). Standard Test Methods For Liquid
Limit, Plastic Limit, and Plasticity Index of Soils. ASTM
International. https://www.astm.org/Stand ards/D4318
[3]. ASTM D1883. (2016). Standard Test Method for
California Bearing Ratio (cbr) of Laboratory-Compacted
Soils. ASTM International. https://www.astm.org/Standards/
D1883
[4]. ASTM D698. (2012). Standard Test Methods for
Laboratory Compaction Characteristics of Soil Using
Standard Effort (12 400 Ft-lbf/ft3 (600 KN-m/m3)) 1. ASTM
International. https://global.ihs.com/doc_detail.cfm?doc
ument_name=ASTM%20D698&item_s_key=00019131
[5]. Burgisser, H.M., Gansser, A., & Pika, J. (1982). Late
glacial lake sediments of the Indus Valley area,
northwestern Himalayas. Eclogae Geologische Helvetica,
75(1), 51-63.
[6]. Correia, A. G., Winter, M. G., & Puppala, A. J. (2016). A review of sustainable approaches in transport infrastructure
geotechnics. Transportation Geotechnics, 7, 21-28.
https://doi.org/10.1016/j.trgeo.2016.03.003
[7]. Fauzi, A., Djauhari, Z., & Fauzi, U. J. (2016). Soil
engineering properties improvement by utilization of cut
waste plastic and crushed waste glass as additive.
International Journal of Engineering and Technology, 8(1),
15-18. https://doi.org/10.7763/IJET.2016.V8.851
[8]. Ferber, V., Auriol, J. C., Cui, Y. J., & Magnan, J. P. (2009).
On the swelling potential of compacted high plasticity
clays. Engineering Geology, 104(3-4), 200-210.
https://doi.org/10.1016/j.enggeo.2008.10.008
[9]. Garg, S. K. (2009). Soil Mechanics and Foundation
Engineering, 7th Ed. Khanna Publishers, NewDelhi.
[10]. Hanson, C. R. (1986). Bedrock geology of the Shigar
valley area, Skardu, Northern Pakistan (Doctoral
dissertation) Dartmouth College, New Hampshire.
[11]. Hanson, C. R. (1989). The northern suture in the Shigar
valley, Baltistan, northern Pakistan. Geological Society of
America Special Paper, 232, 203-215.
[12]. Jegede, G. (2000). Effect of soil properties on
pavement failures along the F209 highway at Ado-Ekiti,
south-western Nigeria. Construction and Building Materials,
14(6-7), 311-315. https://doi.org/10.1016/S0950-0618(00)
00033-7
[13]. Mazumder, M., Kim, H., & Lee, S. J. (2016).
Performance properties of polymer modified asphalt
binders containing wax additives. International Journal of
Pavement Research and Technology, 9(2), 128-139.
https://doi.org/10.1016/j.ijprt.2016.03.004
[14]. Mosa, A. M. (2017). Modification of subgrade
properties using waste material. Applied Research Journal,
3(5), 160-166.
[15]. Mosa, A. M., Taha, M. R., Ismail, A., & Rahmat, R. A. O.
(2013). A diagnostic expert system to overcome
construction problems in rigid highway pavement. Journal
of Civil Engineering and Management, 19(6), 846-861.
[16]. Nirmala, R., & Shanmugapriya, M. (2017). Feasibility
study on enhancing the properties of subgrade material
using waste glass. International of Chemical Science, 15(1), 106.
[17]. Ranadive, M. S., & Tapase, A. B. (2016). Parameter sensitive analysis of flexible pavement. International Journal
of Pavement Research and Technology, 9(6), 466-472.
https://doi.org/10.1016/j.ijprt.2016.12.001
[18]. Ravi, E., Udhayasakthi, R., & Vadivel, T. S. (2016).
Enhancing the clay soil characteristics using copper slag
stabiliation. Journal of Advances in Chemistry, 12(26), 5725-
5729.
[19]. Rollings, R. S. (2003). Evaluation of airfield design
philosophies. In Proceedings of the 22nd PIARC World Road
Congress. Durban, South Africa.
[20]. Sarsam, S. I., & Husain, H. (2016). Impact of micro crack
healing on resilient characteristics of asphalt concrete.
Applied Research Journal, 2, 362-369.
[21]. Sarsam, S., Al Saidi, A., & Al Taie, A. (2016). Assessment
of shear and compressibility properties of asphalt stabilized
collapsible soil. Applied Research Journal, 2(12), 481-487.
[22]. Saygili, A. (2015). Use of waste marble dust for
stabilization of clayey soil. Materials Science, 21(4), 601-606.
https://doi.org/10.5755/j01.ms.21.4.11966
[23]. Semen, P. M. (2006). A generalized approach to soil
strength prediction with machine learning methods (No.
ERDC/CRREL-TR-06-15). Engineering Research and
Development Center Hanover NH Cold Regions Research
and Engineering Lab.
[24]. Shafabakhsh, G. H., Sadeghnejad, M., & Sajed, Y.
(2014). Case study of rutting performance of HMA modified
with waste rubber powder. Case Studies in Construction
Materials, 1, 69-76. https://doi.org/10.1016/j.cscm.2014. 04.005
[25]. Shah, S. H. A., Arif, M., Asif, M. E., & Safdar, M. (2019).
Influence of granite cutting waste addition on the
geotechnical parameters of cohesive soil. International
Journal of Engineering Research and Advanced
Technology (IJERAT), 5(7), 64-74. https://doi.org/10.316
95/IJERAT.2019.3459
[26]. Zumrawi, M. M. (2015). Stabilization of pavement
subgrade by using fly ash activated by cement. American
Journal of Civil Engineering and Architecture, 3(6), 218-
224. https://doi.org/10.12691/ajcea-3-6-5