Industrial Smart Asset Management for Power Services: Perspectives in Big Data

Sekoboto M.*, Poolo S.**, Kikawa C. R.***, Sematimba A.****, Ntirampeba D.*****
*-** The Da Vinci Institute, Lethabong, South Africa.
*** Department of Economics and Statistics, Kabale University, Kabale, Uganda.
**** Department of Mathematics, Gulu University, Uganda.
***** Department of Mathematics and Statistics, Namibia University of Science and Technology, Windhoek, Namibia.
Periodicity:July - December'2021
DOI : https://doi.org/10.26634/jcc.8.2.16475

Abstract

This study explores and discusses upcoming encounters with new technologies in line with big data. Power utilities collect large amounts of data. However, due to their large size and the ambiguity associated with it, they are rarely used. Condition monitoring of assets collects huge amounts of data during routine operations. The question "How to get information from a huge amount of data?" and the notion of "data-rich and information devoid" has faced significant resistance from analytics experts with the advent of support vector machines. Along with new technologies such as the Internet of Things (IoT), big data analytics will be actively used in power utilities. This study assesses the issues and points out ways to address them through paths and strategies to make asset management practices smarter for future generations.

Keywords

Smart Asset Management, Electrical Utilities, Big Data, Data Mining.

How to Cite this Article?

Sekoboto, M., Poolo, S., Kikawa, C. R., Sematimba, A., and Ntirampeba, D. (2021). Industrial Smart Asset Management for Power Services: Perspectives in Big Data. i-manager’s Journal on Cloud Computing, 8(2), 23-32. https://doi.org/10.26634/jcc.8.2.16475

References

[1]. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ..., & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. https://doi.org/10.48550/ arXiv.1603.04467
[2]. Akhavan-Hejazi, H., & Mohsenian-Rad, H. (2018). Power systems big data analytics: An assessment of paradigm shift barriers and prospects. Energy Reports, 4, 91-100. https://doi.org/10.1016/j.egyr.2017.11.002
[3]. Amarantidou, P. (2018). Computer and Network Forensics: investigating network traffic. International Hellenic University Scholar Works, 22(7), 97–114.
[4]. Baptista, M., Sankararaman, S., de Medeiros, I. P., Nascimento Jr, C., Prendinger, H., & Henriques, E. M. (2018). Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling. Computers & Industrial Engineering, 115, 41- 53. https://doi.org/10.1016/j.cie.2017.10.033
[5]. Beaten, D. (2018). The History and Economy of the World Accompanied by ICT. ISTE Group.
[6]. Carroll, T. A., Twito, B., Scumniotales, J., & Baker, C. (2020). U. S. Patent No. 10,805,184. Washington, DC: U.S. Patent and Trademark Office.
[7]. Cigre, W. G. (2011). B3. 12: Obtaining value from online substation condition monitoring. Cigre Technical Brochure, (pp. 462-468).
[8]. d'Almeida, A. C. (Ed.). (2018). Smarter New York City: How City Agencies Innovate. Columbia University Press.
[9]. GARPUR. (2013). Generally Accepted Reliability Principle with Un-certainty modelling and through probabilistic Risk Assessment. Retrieved from https://cordis. europa.eu/project/id/608540
[10]. Ginter, P. M., Duncan, W. J., & Swayne, L. E. (2018). The strategic management of health care organizations. John Wiley & Sons.
[11]. Grover, V., Chiang, R. H., Liang, T. P., & Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of Management Information Systems, 35(2), 388-423. https://doi.org/10. 1080/07421222.2018.1451951
[12]. Haes Alhelou, H., Hamedani-Golshan, M. E., Njenda, T. C., & Siano, P. (2019). A survey on power system blackout and cascading events: Research motivations and challenges. Energies, 12(4), 682. https://doi.org/10.3390/ en12040682
[13]. Hallenbeck, M. E., Ishimaru, J., & Finch, M. (2017). Review of Travel Data Collection and Analysis Process for Delay Calculations Statewide. Washington State Transportation Center, (pp.1-76).
[14]. Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3-12. https://doi. org/10.1002/asmb.2209
[15]. Ismail, A., Truong, H. L., & Kastner, W. (2019). Manufacturing process data analysis pipelines: a requirements analysis and survey. Journal of Big Data, 6(1), 1-26. https://doi.org/10.1186/s40537-018-0162-3
[16]. Jensen, T. (2003). Network Planning-Introductory Issues. Telektronikk, 99(3/4), 9-46.
[17]. Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241-265. https://doi.org/10.1016/j.ymssp.2017.11.024
[18]. Khuntia, S. R., Rueda, J. L., & van der Meijden, M. A. (2019). Smart asset management for electric utilities: Big data and future. In Asset intelligence through integration and interoperability and contemporary vibration engineering technologies (pp. 311-322). Springer, Cham. https://doi.org/10.1007/978-3-319-95711-1_31
[19]. Khuntia, S. R., Tuinema, B. W., Rueda, J. L., & van der Meijden, M. A. (2016). Time-horizons in the planning and operation of transmission networks: An overview. IET Generation, Transmission & Distribution, 10(4), 841-848.
[20]. Kostoeva, R., Upadhyay, R., Sapar, Y., & Zakhor, A. (2019). Indoor 3D interactive asset detection using a smartphone. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 811-817.
[21]. Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. https://doi.org/10.1016/j. bushor.2015.03.008
[22]. Lee, J., Jin, C., Liu, Z., & Davari Ardakani, H. (2017). Introduction to data-driven methodologies for prognostics and health management. In Probabilistic prognostics and health management of energy systems (pp. 9-32). Springer, Cham. https://doi.org/10.1007/978-3-319-55852- 3_2
[23]. Lenz, J., Wuest, T., & Westkämper, E. (2018). Holistic approach to machine tool data analytics. Journal of Manufacturing Systems, 48, 180-191. https://doi.org/10. 1016/j.jmsy.2018.03.003
[24]. Liao, L., & Ahn, H. I. (2016). Combining deep learning and survival analysis for asset health management. International Journal of Prognostics and Health Management, 7(4).
[25]. Mackenzie, A. (2017). Machine learners: Archaeology of a data practice. MIT Press.
[26]. Peng, X., Wen, J., Li, Z., Yang, G., Zhou, C., Reid, A., ... & Siew, W. H. (2017). Rough set theory applied to pattern recognition of Partial Discharge in noise affected cable data. IEEE Transactions on Dielectrics and Electrical Insulation, 24(1), 147-156. https://doi.org/10.1109/TDEI. 2016.006060
[27]. Ratner, B. (2017). Statistical and machine-learning data mining: Techniques for better predictive modeling and analysis of big data. CRC Press.
[28]. Romiszowski, A. J. (2016). Designing Instructional Systems: Decision making in Course Planning and Curriculum Design. Routledge.
[29]. Schrieber, R. R., Willis, H. L., & Philips, E. (2000). Aging power delivery infrastructures. CRC Press.
[30]. Stimmel, C. L. (2015). Big data analytics strategies for the smart grid (pp. 155-169). Boca Ratón: CRC press.
[31]. Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations. Acm Sigmod Record, 31(1), 76-77.
[32]. Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., & Lv, W. (2019). Edge computing security: State of the art and challenges. Proceedings of the IEEE, 107(8), 1608-1631. https://doi.org/10.1109/JPROC.2019.2918437
[33]. Zezula, P., Amato, G., Dohnal, V., & Batko, M. (2006). Similarity search: The Metric Space Approach (Vol. 32). Springer Science & Business Media.
[34]. Zhou, C., Michel, M., Hepburn, D. M., & Song, X. (2009). On-line partial discharge monitoring in medium voltage underground cables. IET Science, Measurement & Technology, 3(5), 354-363. https://doi.org/10.1049/iet-smt. 2008.0100
[35]. Zhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: From big data to big insights. Renewable and Sustainable Energy Reviews, 56, 215-225.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.