References
[1]. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., ..., & Zheng, X. (2016). Tensorflow: Large-scale
machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467. https://doi.org/10.48550/
arXiv.1603.04467
[2]. Akhavan-Hejazi, H., & Mohsenian-Rad, H. (2018).
Power systems big data analytics: An assessment of
paradigm shift barriers and prospects. Energy Reports, 4,
91-100. https://doi.org/10.1016/j.egyr.2017.11.002
[3]. Amarantidou, P. (2018). Computer and Network
Forensics: investigating network traffic. International
Hellenic University Scholar Works, 22(7), 97–114.
[4]. Baptista, M., Sankararaman, S., de Medeiros, I. P.,
Nascimento Jr, C., Prendinger, H., & Henriques, E. M.
(2018). Forecasting fault events for predictive
maintenance using data-driven techniques and ARMA
modeling. Computers & Industrial Engineering, 115, 41-
53. https://doi.org/10.1016/j.cie.2017.10.033
[5]. Beaten, D. (2018). The History and Economy of the
World Accompanied by ICT. ISTE Group.
[6]. Carroll, T. A., Twito, B., Scumniotales, J., & Baker, C.
(2020). U. S. Patent No. 10,805,184. Washington, DC: U.S.
Patent and Trademark Office.
[7]. Cigre, W. G. (2011). B3. 12: Obtaining value from online
substation condition monitoring. Cigre Technical
Brochure, (pp. 462-468).
[8]. d'Almeida, A. C. (Ed.). (2018). Smarter New York City:
How City Agencies Innovate. Columbia University Press.
[9]. GARPUR. (2013). Generally Accepted Reliability
Principle with Un-certainty modelling and through
probabilistic Risk Assessment. Retrieved from https://cordis.
europa.eu/project/id/608540
[10]. Ginter, P. M., Duncan, W. J., & Swayne, L. E. (2018). The
strategic management of health care organizations. John
Wiley & Sons.
[11]. Grover, V., Chiang, R. H., Liang, T. P., & Zhang, D.
(2018). Creating strategic business value from big data
analytics: A research framework. Journal of Management
Information Systems, 35(2), 388-423. https://doi.org/10. 1080/07421222.2018.1451951
[12]. Haes Alhelou, H., Hamedani-Golshan, M. E., Njenda,
T. C., & Siano, P. (2019). A survey on power system blackout
and cascading events: Research motivations and
challenges. Energies, 12(4), 682. https://doi.org/10.3390/
en12040682
[13]. Hallenbeck, M. E., Ishimaru, J., & Finch, M. (2017).
Review of Travel Data Collection and Analysis Process for
Delay Calculations Statewide. Washington State
Transportation Center, (pp.1-76).
[14]. Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep
learning for finance: deep portfolios. Applied Stochastic
Models in Business and Industry, 33(1), 3-12. https://doi.
org/10.1002/asmb.2209
[15]. Ismail, A., Truong, H. L., & Kastner, W. (2019).
Manufacturing process data analysis pipelines: a
requirements analysis and survey. Journal of Big Data, 6(1),
1-26. https://doi.org/10.1186/s40537-018-0162-3
[16]. Jensen, T. (2003). Network Planning-Introductory
Issues. Telektronikk, 99(3/4), 9-46.
[17]. Khan, S., & Yairi, T. (2018). A review on the application
of deep learning in system health management.
Mechanical Systems and Signal Processing, 107, 241-265.
https://doi.org/10.1016/j.ymssp.2017.11.024
[18]. Khuntia, S. R., Rueda, J. L., & van der Meijden, M. A.
(2019). Smart asset management for electric utilities: Big
data and future. In Asset intelligence through integration
and interoperability and contemporary vibration
engineering technologies (pp. 311-322). Springer, Cham.
https://doi.org/10.1007/978-3-319-95711-1_31
[19]. Khuntia, S. R., Tuinema, B. W., Rueda, J. L., & van der
Meijden, M. A. (2016). Time-horizons in the planning and
operation of transmission networks: An overview. IET
Generation, Transmission & Distribution, 10(4), 841-848.
[20]. Kostoeva, R., Upadhyay, R., Sapar, Y., & Zakhor, A.
(2019). Indoor 3D interactive asset detection using a
smartphone. The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 42,
811-817.
[21]. Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises.
Business Horizons, 58(4), 431-440. https://doi.org/10.1016/j.
bushor.2015.03.008
[22]. Lee, J., Jin, C., Liu, Z., & Davari Ardakani, H. (2017).
Introduction to data-driven methodologies for prognostics
and health management. In Probabilistic prognostics and
health management of energy systems (pp. 9-32).
Springer, Cham. https://doi.org/10.1007/978-3-319-55852-
3_2
[23]. Lenz, J., Wuest, T., & Westkämper, E. (2018). Holistic
approach to machine tool data analytics. Journal of
Manufacturing Systems, 48, 180-191. https://doi.org/10.
1016/j.jmsy.2018.03.003
[24]. Liao, L., & Ahn, H. I. (2016). Combining deep learning
and survival analysis for asset health management.
International Journal of Prognostics and Health
Management, 7(4).
[25]. Mackenzie, A. (2017). Machine learners:
Archaeology of a data practice. MIT Press.
[26]. Peng, X., Wen, J., Li, Z., Yang, G., Zhou, C., Reid, A., ...
& Siew, W. H. (2017). Rough set theory applied to pattern
recognition of Partial Discharge in noise affected cable
data. IEEE Transactions on Dielectrics and Electrical
Insulation, 24(1), 147-156. https://doi.org/10.1109/TDEI.
2016.006060
[27]. Ratner, B. (2017). Statistical and machine-learning
data mining: Techniques for better predictive modeling
and analysis of big data. CRC Press.
[28]. Romiszowski, A. J. (2016). Designing Instructional
Systems: Decision making in Course Planning and
Curriculum Design. Routledge.
[29]. Schrieber, R. R., Willis, H. L., & Philips, E. (2000). Aging
power delivery infrastructures. CRC Press.
[30]. Stimmel, C. L. (2015). Big data analytics strategies for
the smart grid (pp. 155-169). Boca Ratón: CRC press.
[31]. Witten, I. H., & Frank, E. (2002). Data mining: practical
machine learning tools and techniques with Java
implementations. Acm Sigmod Record, 31(1), 76-77.
[32]. Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., & Lv, W.
(2019). Edge computing security: State of the art and challenges. Proceedings of the IEEE, 107(8), 1608-1631.
https://doi.org/10.1109/JPROC.2019.2918437
[33]. Zezula, P., Amato, G., Dohnal, V., & Batko, M. (2006).
Similarity search: The Metric Space Approach (Vol. 32).
Springer Science & Business Media.
[34]. Zhou, C., Michel, M., Hepburn, D. M., & Song, X.
(2009). On-line partial discharge monitoring in medium voltage underground cables. IET Science, Measurement &
Technology, 3(5), 354-363. https://doi.org/10.1049/iet-smt.
2008.0100
[35]. Zhou, K., Fu, C., & Yang, S. (2016). Big data driven
smart energy management: From big data to big insights.
Renewable and Sustainable Energy Reviews, 56, 215-225.