oC for 1 h. For the composition of Ce: Gd=0.8:0.2 in the EDTA complex with sintering at 850oC only the crystalline phases of Ce0.8Gd0.2O1.9 were synthesised on the Si substrates. Microstructures of the Ce0.8Gd0.2O1.9 films had 78 3D-relative densities as revealed by ellipsometry. Furthermore, the oxidation degree of the Ce ion was equal in the obtained Ce0.8Gd0.2O films at various experimental conditions as confirmed by XPS analysis.

">

Synthesis of Gd-Doped Ceria Films from (Ce, Gd)-EDTA Solutions via Atmospheric Sintering

Keiji Komatsu*, Tsuyoshi Kikuta**, Atsushi Nakamura***, Hidetoshi Saitoh****
*-**,**** Department of Materials Science and Technology, Nagaoka University of Technology, Nagaoka, Japan.
*** Chubu Chelest Co Ltd, Osaka, Japan.
Periodicity:July - September'2019
DOI : https://doi.org/10.26634/jms.7.2.16027

Abstract

Gd-doped ceria (GDC) films were synthesized on Si substrates from (Ce, Gd)-EDTA solutions and atmospheric sintering. The (Ce, Gd)-EDTA solutions were coated onto silicon by a commercial spin coater and the coated samples were sintered in a furnace at 850oC for 1 h. For the composition of Ce: Gd=0.8:0.2 in the EDTA complex with sintering at 850oC only the crystalline phases of Ce0.8Gd0.2O1.9 were synthesised on the Si substrates. Microstructures of the Ce0.8Gd0.2O1.9 films had 78 3D-relative densities as revealed by ellipsometry. Furthermore, the oxidation degree of the Ce ion was equal in the obtained Ce0.8Gd0.2O films at various experimental conditions as confirmed by XPS analysis.

Keywords

Gd-Doped Ceria, Ceria, Metal-EDTA, Stoichiometry.

How to Cite this Article?

Komatsu, K., Kikuta, T., Nakamura, A., and Saitoh, H. (2019). Synthesis of Gd-Doped Ceria Films from (Ce, Gd)-EDTA Solutions via Atmospheric Sintering. i-manager’s Journal on Material Science, 7(2), 1-9. https://doi.org/10.26634/jms.7.2.16027

References

[1]. Anjaneya, K. C., & Singh, M. P. (2017). Synthesis and properties of gadolinium doped ceria electrolyte for ITSOFCs by EDTA-citrate complexing method. Journal of Alloys and Compounds, 695, 871-876. https://doi.org/ 10.1016/j.jallcom.2016.10.175
[2]. Azad, S., Marina, O. A., Wang, C. M., Saraf, L., Shutthanandan, V., McCready, D. E., ... & Thevuthasan, S. (2005). Nanoscale effects on ion conductance of layerby- layer structures of gadolinia-doped ceria and zirconia. Applied Physics Letters, 86(13), 131906. https://doi.org/ 10.1063/1.1894615
[3]. Badwal, S. P. S., Fini, D., Ciacchi, F. T., Munnings, C., Kimpton, J. A., & Drennan, J. (2013). Structural and microstructural stability of ceria–gadolinia electrolyte exposed to reducing environments of high temperature fuel cells. Journal of Materials Chemistry A, 1(36), 10768- 10782. https://doi.org/10.1039/C3TA11752A
[4]. Fu, C. J., Liu, Q. L., Chan, S. H., Ge, X. M., & Pasciak, G. (2010). Effects of transition metal oxides on the densification of thin-film GDC electrolyte and on the performance of intermediate-temperature SOFC. International Journal of Hydrogen Energy, 35(20), 11200- 11207. https://doi.org/10.1016/j.ijhydene.2010.07.049
[5]. Gong, Y., Ji, W., Zhang, L., Li, M., Xie, B., Wang, H., ... & Song, Y. (2011). Low temperature deposited (Ce, Gd) O2−x interlayer for La Sr Co0.6Fe0.4O0.2Fe0.8O3 cathode based solid oxide fuel cell. Journal of Power Sources, 196(5), 2768- 2772. https://doi.org/10.1016/j.ssi.2007.12.008
[6]. Grover, V., Shukla, R., Kumari, R., Mandal, B. P., Kulriya, P. K., Srivastava, S. K., ... & Avasthi, D. K. (2014). Effect of grain size and microstructure on radiation stability of CeO2 : An extensive study. Physical Chemistry Chemical Physics, 16(48), 27065-27073. https://doi.org/10.1039/ C4CP04215H
[7]. Heavens, O. S. (1965). Optical Properties of Thin Solid Films. New York: Dover Publications.
[8]. Jamale, A. P., Bhosale, C. H., & Jadhav, L. D. (2015). Electrochemical behavior of LSCF/GDC interface in symmetric cell: An application in solid oxide fuel cells. Journal of Alloys and Compounds, 623, 136-139. https://doi.org/10.1016/j.jallcom.2014.10.122
[9]. Jordan, N., Assenmacher, W., Uhlenbruck, S., Haanappel, V. A. C., Buchkremer, H. P., Stöver, D., & Mader, W. (2008). Ce0.8Gd0.2O2-δ protecting layers manufactured by physical vapor deposition for IT-SOFC. Solid State Ionics, 179(21-26), 919-923.
[10]. Ko, H. J., Myung, J. H., Lee, J. H., Hyun, S. H., & Chung, J. S. (2012). Synthesis and evaluation of (La0.6Sr0.4)(Co0.2Fe0.8)O3 (LSCF)-Y0.08 Zr0.92O1.96 (YSZ)-Gd0.1Ce0.9O2-δ- (GDC) dual composite SOFC cathodes for high performance and durability. International Journal of Hydrogen Energy, 37(22), 17209-17216.https://doi.org/ 10.1016/j.ijhydene.2012.08.099
[11]. Komatsu, K., Nakamura, A., Kato, A., Ohshio, S., Akasaka, H., & Saitoh, H. (2011). Investigation of Temperature Dependence on Emission Properties of Sr-Al- O:Eu2+ Phosphor Synthesized using Elemental Diffusion from Substrate. In IOP Conference Series: Materials Science and Engineering (Vol. 18, No. 10, p. 102017). https://doi.org/10.1088/1757-899X/18/10/102017
[12]. Komatsu, K., Sekiya, T., Toyama, A., Hasebe, Y., Nakamura, A., Noguchi, M., ... & Saitoh, H. (2014). Deposition of metal oxide films from metal–EDTA complexes by flame spray technique. Journal of Thermal Spray Technology, 23(5), 833-838. https://doi.org/10.1007/s11666-014-0104-3
[13]. Li, Z. P., Mori, T., Auchterlonie, G. J., Zou, J., & Drennan, J. (2011). Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs. Journal of Solid State Chemistry, 184(9), 2458-2461. https://doi.org/10. 1016/j.jssc.2011.07.021
[14]. Lin, J. D., Duh, J. G., & Chiou, B. S. (2001). The influence of washing and calcination condition on urea-derived ceria-yttria-doped tetragonal zirconia powders. Materials Chemistry and Physics, 68(1-3), 42-55. https://doi.org/10.1016/S0254-0584(00)00290-X
[15]. Lin, T. N., Lee, M. C., Yang, R. J., Chang, J. C., Kao, W. X., & Lee, L. S. (2012). Chemical state identification of Ce3+ /Ce4+ in the Sm0.2 Ce0.8O2−δ electrolyte for an anode-supported solid oxide fuel cell after long-term operation, Materials Letters, 81, 185-188. https://doi.org/10.1016/j. matlet.2012.04.122
[16]. Mullins, D. R., Overbury, S. H., & Huntley, D. R. (1998). Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surface Science, 409(2), 307-319. https://doi.org/10.1016/S0039-6028(98)00257-X
[17]. Oh, E. O., Whang, C. M., Lee, Y. R., Park, S. Y., Prasad, D. H., Yoon, K. J., ... & Lee, H. W. (2014). Fabrication of thinfilm gadolinia-doped ceria (GDC) interdiffusion barrier layers for intermediate-temperature solid oxide fuel cells (IT-SOFCs) by Chemical Solution Deposition (CSD). Ceramics International, 40(6), 8135-8142. https://doi.org/ 10.1016/j.ceramint.2014.01.008
[18]. Orliukas, A. F., Šalkus, T., Kežionis, A., Venckutė, V., Kazlauskienė, V., Miškinis, J., ... & Dudonis, J. (2011). XPS and impedance spectroscopy of some oxygen vacancy conducting solid electrolyte ceramics. Solid State Ionics, 188(1), 36-40. https://doi.org/10.1016/j.ssi.2010.11.001
[19]. Plonczak, P., Joost, M., Hjelm, J., Søgaard, M., Lundberg, M., & Hendriksen, P. V. (2011). A high performance ceria based interdiffusion barrier layer prepared by spin-coating. Journal of Power Sources, 196(3), 1156-1162. https://doi.org/10.1016/j.jpowsour. 2010.08.108
[20]. Saitoh, H., Kawahara, K. I., Ohshio, S., Nakamura, A., & Nambu, N. (2005). Metal composition of Y O : Eu 2 3 powder evaluated using particle analyzer. Science and Technology of Advanced Materials, 6(2), 205-209. https://doi.org/10.1016/j.stam.2004.11.015
[21]. Schlupp, M. V. F., Kurlov, A., Hwang, J., Yáng, Z., Döbeli, M., Martynczuk, J., ... & Gauckler, L. J. (2013). Gadolinia doped ceria thin films prepared by aerosol assisted chemical vapor deposition and applications in intermediate-temperature solid oxide fuel cells. Fuel Cells, 13(5), 658-665. https://doi.org/10.1002/fuce. 201300029
[22]. Taylor, D. J., Fleig, P. F., & Hietala, S. L. (1998). Technique for characterization of thin film porosity. Thin Solid Films, 332(1-2), 257-261. https://doi.org/10.1016/ S0040-6090(98)01264-4
[23]. Xin, D. Y., Komatsu, K., Abe, K., Costa, T., Ikeda, Y., Nakamura, A., ... & Saitoh, H. (2017). Heat-shock properties in yttrium-oxide films synthesized from metal–ethylenediamine tetraacetic acid complex through flame-spray apparatus. Applied Physics A, 123(3), 194. https://doi.org/10.1007/s00339-017-0839-z
[24]. Zarkov, A., Stanulis, A., Mikoliunaite, L., Katelnikovas, A., Jasulaitiene, V., Ramanauskas, R., ... & Kareiva, A. (2017). Chemical solution deposition of pure and Gd-doped ceria thin films: Structural, morphological and optical properties. Ceramics International, 43(5), 4280- 4287. https://doi.org/10.1016/j.ceramint.2016.12.070
[25]. Zhang, F., Wang, P., Koberstein, J., Khalid, S., & Chan, S. W. (2004). Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surface Science, 563(1-3), 74-82. https://doi.org/10. 1016/j.susc.2004.05.138
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.