Surface Enhancement and Improved Mechanical Properties of SA-210 Gr. A1 Boiler Steel by Friction Stir Processing

Supreet Singh*, Manpreet Kaur**, Manoj Kumar***, Harprabhjot Singh****, Navneetinder Singh*****, Sukanta Sarkar******
*,*** Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India.
** Department of Mechanical Engineering, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib, Punjab, India.
**** Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, India.
***** Department of Automobile Engineering, Chandigarh University, Mohali, Punjab, India.
****** Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Maharashtra, India.
Periodicity:July - September'2019
DOI : https://doi.org/10.26634/jms.7.2.15941

Abstract

Elevated temperature corrosion is an important material squalor mechanism knowledgeable in boilers in power plants energy generation sectors. Metallic materials such as low carbon steels have special properties, such as easy fabrication and machinability, low cost, but a solemn disadvantage of these materials is that the deterioration in properties originating from the interface with the environment and has poor corrosion resistance. The main objective of the current investigation is to achieve strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The microstructural, hardness, tensile and corrosion resistance of the unprocessed and FSPed materials was assessed. The characterization was done by XRD and SEM/EDS analyses with an intend to suggest mechanisms behind high temperature corrosion behavior of the FSPed samples.

Keywords

Friction Stir Processing, Characterization, Corrosion, SEM/EDS/XRD

How to Cite this Article?

Singh, S., Kaur, M., Kumar, M., Singh, H., Singh, N., and Sarkar, S. (2019). Surface Enhancement and Improved Mechanical Properties of SA-210 Gr. A1 Boiler Steel by Friction Stir Processing i-manager’s Journal on Material Science, 7(1), 49-60. https://doi.org/10.26634/jms.7.2.15941

References

[1]. Amabogha, B. (2013). Corrosion in thermal energy generating plants. International Journal of Engineering, 4(4), 29-35.
[2]. Arora, H. S., Singh, H., & Dhindaw, B. K. (2013). Wear behaviour of a Mg alloy subjected to friction stir processing. Wear, 303(1-2), 65-77. https://doi.org/10. 1016/j.wear.2013.02.023
[3]. Bhadeshia, H., & Honeycombe, R. (2017). Steels: Microstructure and Properties (4th ed.). Cambridge: Butterworth-Heinemann.
[4]. Chang, C. I., Du, X. H., & Huang, J. C. (2007). Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing. Scripta Materialia, 57(3), 209-212. https://doi. org/10.1016/j.scriptamat.2007.04.007
[5]. Chang, C., Du, X. H., & Huang, J. C. (2008). Producing nanograined microstructure in Mg-Al-Zn alloy by two-step friction stir processing. Scripta Materialia, 59(3), 356-359. https://doi.org/10.1016/j.scriptamat.2008.04.003
[6]. Chawla, V., Chawla, A., Puri, D., Prakash, S., Gurbuxani, P. G., & Sidhu, B. S. (2011). Hot corrosion & erosion problems in coal based power plants in India and possible solutions–a review. Journal of Minerals and Materials Characterization and Engineering, 10(04), 367- 385.
[7]. De, P. S., Mishra, R. S., & Smith, C. B. (2009). Effect of microstructure on fatigue life and fracture morphology in an aluminum alloy. Scripta Materialia, 60(7), 500-503. https://doi.org/10.1016/j.scriptamat.2008.11.032
[8]. El-Danaf, E. A., El-Rayes, M. M., & Soliman, M. S. (2010). Friction stir processing: An effective technique to refine grain structure and enhance ductility. Materials & Design, 31(3), 1231-1236. https://doi.org/10.1016/j. matdes.2009.09.025
[9]. Estrin, Y., Finel, A., Veron, M., & Mazière, D. (2002). Thermodynamics, Microstructures, and Plasticity. NATO Advanced Study Institute on Thermodynamics. Microstructures and Plasticity, Kluwer Academic Publishers, France, 217-238.
[10]. Grewal, H. S., Arora, H. S., Singh, H., & Agrawal, A. (2013). Surface modification of hydroturbine steel using friction stir processing. Applied Surface Science, 268, 547-555. https://doi.org/10.1016/j.apsusc.2013.01.006
[11]. Hajian, M., Abdollah-Zadeh, A., Rezaei-Nejad, S. S., Assadi, H., Hadavi, S. M. M., Chung, K., & Shokouhimehr, M. (2014). Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing. Applied Surface Science, 308, 184-192. https://doi.org/ 10.1016/j.apsusc.2014.04.132
[12]. Hajian, M., Abdollah-Zadeh, A., Rezaei-Nejad, S. S., Assadi, H., Hadavi, S. M. M., Chung, K., & Shokouhimehr, M. (2015). Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel. Materials & Design, 67, 82-94. https://doi.org/10.1016/j.matdes. 2014.10.082
[13]. Karthikeyan, L., Senthilkumar, V.S., Balasubramanian, V., & Natarajan, S. (2009). Mechanical property and microstructural changes during friction stir processing of cast aluminum 2285 alloy. Materials & Design, 30(6), 2237-2242. https://doi.org/10. 1016/j.matdes.2008.09.006
[14]. Kumar, R., Singh, R., & Kumar, S. (2018). Erosion and hot corrosion phenomena in thermal power plant and their preventive methods: A study. Asian Review of Mechanical Engineering, 7(1), 38-45.
[15]. Lathabai, S., Ottmüller, M., & Fernandez, I. (1998). Solid particle erosion behaviour of thermal sprayed ceramic, metallic and polymer coatings. Wear, 221(2), 93-108. https://doi.org/10.1016/S0043-1648(98)00267-1
[16]. Liechty, B. C., & Webb, B. W. (2008). Flow field characterization of friction stir processing using a particlegrid method. Journal of Materials Processing Technology, 208(1-3), 431-443. https://doi.org/10.1016/j.jmatprotec. 2008.01.008
[17]. Lorenzo-Martin, C., & Ajayi, O. O. (2015). Rapid sur face hardening and enhanced tribological performance of 4140 steel by friction stir processing. Wear, 332, 962-970. https://doi.org/10.1016/j.wear.2015. 01.052
[18]. Ma, Z. Y., Liu, F. C., & Mishra, R. S. (2010). Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Materialia, 58(14), 4693-4704. https://doi.org/10.1016/j. actamat.2010.05.003
[19]. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering R, 50, 1-78. https://doi.org/10.1016/j.mser.2005.07.00
[20]. Nagaoka, T., Kimoto, Y., Watanabe, H., Fukusumi, M., Morisada, Y., & Fujii, H. (2015). Friction stir processing of a D2 tool steel layer fabricated by laser cladding. Materials & Design, 83, 224-229. https://doi.org/10.1016/ j.matdes.2015.06.040
[21]. Ni, D. R., Wang, D., Feng, A. H., Yao, G., & Ma, Z. Y. (2009). Enhancing the high-cycle fatigue strength of Mg–9Al–1Zn casting by friction stir processing. Scripta Materialia, 61(6), 568-571. https://doi.org/10.1016/j. scriptamat.2009.05.023
[22]. Nicholas, E. D. (2003). Friction processing technologies. Welding in the World, 47(11-12), 2-9.
[23]. Rahbar-Kelishami, A., Abdollah-Zadeh, A., Hadavi, M. M., Seraj, R. A., & Gerlich, A. P. (2014). Improvement of wear resistance of sprayed layer on 52100 steel by friction stir processing. Applied Surface Science, 316, 501-507. https://doi.org/10.1016/j.apsusc.2014.08.033
[24]. Su, J. Q., Nelson, T. W., & Sterling, C. J. (2005). Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Materialia, 52(2), 135-140. https://doi.org/10. 1016/j.scriptamat.2004.09.014
[25]. Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith P., & Dawes, C.J., (1991). Friction stir butt welding. Int. Patent No. PCT/GB92/02203.
[26]. Wood, R. J. K., Mellor, B. G., & Binfield, M. L. (1997). Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear, 211(1), 70-83. https://doi.org/10.1016/S0043-1648(97) 00071-9
[27]. Xue, P., Li, W. D., Wang, D., Wang, W. G., Xiao, B. L., & Ma, Z. Y. (2016). Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing. Materials Science and Engineering: A, 670, 153-158. https://doi.org/10.1016/j. msea.2016.06.014
[28]. Xue, P., Ma, Z. Y., Komizo, Y., & Fujii, H. (2016). Achieving ultrafine-grained ferrite structure in friction stir processed weld metal. Materials Letters, 162, 161-164. https://doi.org/10.1016/j.matlet.2015.09.115
[29]. Xue, P., Xiao, B. L., & Ma, Z. Y. (2013). Achieving largearea bulk ultrafine grained Cu via submerged multiplepass friction stir processing. Journal of Materials Science & Technology, 29(12), 1111-1115. https://doi.org/10. 1016/j.jmst.2013.09.021
[30]. Xue, P., Xiao, B. L., Wang, W. G., Zhang, Q., Wang, D., Wang, Q. Z., & Ma, Z. Y. (2013). Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel. Materials Science and Engineering: A, 575, 30-34. https://doi.org/ 10.1016/j.msea.2013.03.033
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.