2 were synthesized using soft chemical ion exchange route at room temperature over the Indium Tin Oxide (ITO) glass substrate for photovoltaic applications; these as-deposited thin films were characterized for structural, morphological, optical, and electrical properties. The structural characteristics observed using X-ray diffraction pattern (XRD) represent (112), (212), (105), and (205) planes corresponding to chalcopyrite phase of tetragonal CuInGaSe2 material. Peak at 21.40in XRD confirms CdS composition, while average crystallite size is calculated to be 27nm. The XRD observations supported by Raman spectrum represent two shifts at ~113 cm-1, and 298 cm-1, respectively corresponding to A1and B2 modes of chalcopyrite CuInGaSe2 materials. Morphological studies using Scanning Electron Microscopy (SEM) exhibits plate like petal distribution with smaller size particles attached over the substrate surface. The energy band gap calculated using extrapolating the absorbance spectra is found to be ~1.47eV. This may correspond to defect state and stiochiometry induced charge transfer. The Hall Effect measurement revealed carrier charge concentration of 3x1023cm-3, charge mobility of 7.2 cm2/Vs. I-V studies show ~1.12% conversion efficiency under light illumination condition of 100 mW/cm2.

">

Soft Chemical Route Synthesized CdS/CuInGaSe2 Thin Films for Photovoltaic Application

Rajesh A. Joshi*, Nikhielesh S. Bajaj**, Mukul Gupta***, Ekram Habeeb Hassan****
*-** Department of Physics, Toshniwal Arts, Commerce and Science College, Sengaon, Maharashtra, India.
***-**** UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, Madhya Pradesh, India.
Periodicity:July - September'2019
DOI : https://doi.org/10.26634/jms.7.2.15649

Abstract

Chalcopyrite heterojunction thin films of CdS/CuInGaSe2 were synthesized using soft chemical ion exchange route at room temperature over the Indium Tin Oxide (ITO) glass substrate for photovoltaic applications; these as-deposited thin films were characterized for structural, morphological, optical, and electrical properties. The structural characteristics observed using X-ray diffraction pattern (XRD) represent (112), (212), (105), and (205) planes corresponding to chalcopyrite phase of tetragonal CuInGaSe2 material. Peak at 21.40in XRD confirms CdS composition, while average crystallite size is calculated to be 27nm. The XRD observations supported by Raman spectrum represent two shifts at ~113 cm-1, and 298 cm-1, respectively corresponding to A1and B2 modes of chalcopyrite CuInGaSe2 materials. Morphological studies using Scanning Electron Microscopy (SEM) exhibits plate like petal distribution with smaller size particles attached over the substrate surface. The energy band gap calculated using extrapolating the absorbance spectra is found to be ~1.47eV. This may correspond to defect state and stiochiometry induced charge transfer. The Hall Effect measurement revealed carrier charge concentration of 3x1023cm-3, charge mobility of 7.2 cm2/Vs. I-V studies show ~1.12% conversion efficiency under light illumination condition of 100 mW/cm2.

Keywords

Thin Films, Heterojunction, Chemical Ion Exchange Route, Photovoltaic Applications.

How to Cite this Article?

Joshi, R. A., Bajaj, N. S., Gupta, M., and Phase, D. M. (2019). Soft Chemical Route Synthesized CdS/CuInGaSe2 Thin Films for Photovoltaic Application. i-manager’s Journal on Material Science, 7(1), 35-41. https://doi.org/10.26634/jms.7.2.15649

References

[1]. Beck, M. E., Weiss, T., Fischer, D., Fiechter, S., Jäger- Waldau, A., & Lux-Steiner, M. C. (2000). Structural analysis of Cu1-xAgxGaSe2 bulk materials and thin films. Thin Solid Films, 361, 130-134. https://doi.org/10.1016/S0040- 6090(99)00785-3
[2]. Bhattacharya, R. N. (2013). CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers. Solar Energy Materials and Solar Cells, 113, 96-99. https://doi.org/10.1016/j.solmat.2013.01.028
[3]. Chaure, N. B., Samantilleke, A. P., Burton, R. P., Young, + J., & Dharmadasa, I. M. (2005). Electrodeposition of p , p+, i, n and n+ -type copper indium gallium diselenide for development of multilayer thin film solar cells. Thin Solid Films, 472(1-2), 212-216. https://doi.org/10.1016/j.tsf. 2004.07.051
[4]. Chun, Y. G., Kim, K. H., & Yoon, K. H. (2005). Synthesis of CuInGaSe2 nanoparticles by solvothermal route. Thin Solid Films, 480, 46-49. https://doi.org/10.1016/j.tsf.2004. 11.078
[5]. Devaney, W. E., & Mickelsen, R. A. (1988). Vacuum deposition processes for CuInSe2 and CuInGaSe2 based solar cells. Solar Cells, 24(1-2), 19-26. https://doi.org/ 10.1016/0379-6787(88)90032-4
[6]. Hsu, W. H., Hsiang, H. I., & Yu, S. (2015). Crystallite formation mechanism of CuIn2 (Se, S) synthesized using solvothermal method. Ceramics International, 41(2), 3208-3213. https://doi.org/10.1016/j.ceramint.2014. 10.179
[7]. Kong, H., He, J., Meng, X., Tao, J., Sun, L., Yang, P., & Chu, J. (2014). Influence of Se supply for selenization of Cu (In, Ga) Se2 precursors deposited by sputtering from a single quaternary target. Materials Letters, 118, 21-23. https://doi.org/10.1016/j.matlet.2013.12.050
[8]. Lee, T. Y., Lee, I. H., Jung, S. H., & Chung, C. W. (2013). Characteristics of CdS thin films deposited on glass and Cu (In, Ga) Se2 layer using chemical bath deposition. Thin Solid Films, 548, 64-68. https://doi.org/10.1016/j.tsf.2013. 08.101
[9]. Monsefi, M., & Kuo, D. H. (2014). Defect state and electric transport of the Cu-poor, Cu-rich, and In-rich Cu(In,Ga)Se2 bulk materials. Materials Chemistry and Physics, 145(1-2), 255-259. https://doi.org/10.1016/j. matchemphys.2014.02.019
[10]. Naghavi, N., Mollica, F., Goffard, J., Posada, J., Duchatelet, A., Jubault, M., ... & Greffet, J. J. (2017). Ultrathin Cu (In, Ga) Se2 based solar cells. Thin Solid Films, 2 633, 55-60. https://doi.org/10.1016/j.tsf.2016.11.029
[11]. Okada, H., Lee, H. S., Wakahara, A., Yoshida, A., Ohshima, T., & Kamiya, T. (2006). Study of electron irradiation-induced defects in CuInSe2 and CuInxGa1- 2 xSe2 by electron spin resonance. Solar Energy Materials and Solar Cells, 90(1), 93-99. https://doi.org/10.1016/ j.solmat.2005.03.005
[12]. Pugalenthi, A. S., Balasundaraprabhu, R., Prasanna, S., Habibuddin, S., Muthukumarasamy, N., Rao, G. M., & Kannan, M. D. (2016). Effect of post deposition annealing on the structure, morphology, optical and electrical properties of CuInGaSe2 thin films. Optical Materials, 62, 132-138. https://doi.org/10.1016/ j.optmat.2016.09.045
[13]. Puttnins, S., Levcenco, S., Schwarzburg, K., Benndorf, G., Daume, F., Rahm, A., ... & Unold, T. (2013). Effect of sodium on material and device quality in low temperature deposited Cu(In,Ga)Se . Solar Energy 2 Materials and Solar Cells, 119, 281-286. https://doi.org/ 10.1016/j.solmat.2013.08.029
[14]. Ramanathan, K., Hasoon, F. S., Smith, S., Young, D. L., Contreras, M. A., Johnson, P. K., ... & Sites, J. R. (2003). Surface treatment of CuInGaSe2 thin films and its effect on the photovoltaic properties of solar cells. Journal of Physics and Chemistry of Solids, 64(9-10), 1495-1498. https://doi.org/10.1016/S0022-3697(03)00169-0
[15]. Ramanathan, K., Teeter, G., Keane, J. C., & Noufi, R. (2005). Properties of high-efficiency CuInGaSe2 thin film solar cells. Thin Solid Films, 480-481, 499-502. https://doi.org/10.1016/j.tsf.2004.11.050
[16]. Rana, T. R., & Kim, J. (2016). Phase engineering of CBD grown tin sulfide films by post-sulfurization and solar cell application. Current Applied Physics, 16(12), 1666- 1673. https://doi.org/10.1016/j.cap.2016.10.002
[17]. Robinson, R. D., Sadtler, B., Demchenko, D. O., Erdonmez, C. K., Wang, L. W., & Alivisatos, A. P. (2007). Spontaneous superlattice formation in nanorods through partial cation exchange. Science, 317(5836), 355-358. https://doi.org/10.1126/science.1142593
[18]. Sakurai, K., Hunger, R., Tsuchimochi, N., Baba, T., Matsubara, K., Fons, P., ... & Niki, S. (2003). Properties of CuInGaSe2 solar cells based upon an improved three- stage process. Thin Solid Films, 431-432, 6-10. https://doi.org/10.1016/S0040-6090(03)00226-8
[19]. Sugiyama, M., Dejene, F. B., Kinoshita, A., Fukaya, M., Maru, Y., Nakagawa, T., ... & Chichibu, S. F. (2006). The use of diethylselenide as a less-hazardous source in CuInGaSe2 photoabsorbing alloy formation by selenization of metal precursors premixed with Se. Journal of Crystal Growth, 294(2), 214-217. https://doi.org/10. 1016/j.jcrysgro.2006.05.062
[20]. Wasim, S. M., Durante, C., & Rincon, C. (1996). Red shift of the band gap of Fe doped CuIny Ga1− y, Se2. Materials Letters, 28(1-3), 231-235. https://doi.org/10. 1016/0167-577X(95)00270-7
[21]. Yanagisawa, T., Kojima, T., Koyanagi, T., Takahisa, K., & Nakamura, K. (2002). Changes in the characteristics of CuInGaSe2 solar cells under light irradiation and during recovery: Degradation analysis by the feeble light measuring method. Microelectronics Reliability, 42(2), 219-223. https://doi.org/10.1016/S0026-2714(01)00134- 2
[22]. Yang, J., Du, H. W., Chen, D. S., Xu, F., Zhou, P. H., Xu, J., & Ma, Z. Q. (2015). Analysis of recombination path for Cu(In,Ga)Se2 solar cells through luminescence. Materials Letters, 145, 236-238. https://doi.org/10.1016/ j.matlet.2015.01.105
[23]. Zhang, S. B., Wei, S. H., & Zunger, A. (1997). Stabilization of ternary compounds via ordered arrays of defect pairs. Physical Review Letters, 78(21), 4059. https://doi.org/10.1103/PhysRevLett.78.4059
[24]. Zhou, A. J., Mei, D., Kong, X. G., Xu, X. H., Feng, L. D., Dai, X. Y., ... & Li, J. Z. (2012). One-step synthesis of Cu(In,Ga)Se2 absorber layers by magnetron sputtering from a single quaternary target. Thin Solid Films, 520(19), 6068-6074. https://doi.org/10.1016/j.tsf.2012.05.035
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.