References
[1]. Baron, J., & Ollivier, J. P. (1992). The Durability of Concrete. The Collection of Technical Association of Hydraulic Binders Industry Edition of the School of Bridges and Roads, 49, Rue University, 75007 Paris.
[2]. Bassuoni, M. T., & Nehdi, M. L. (2009). Durability of selfconsolidating concrete to sulfate attack under combined cyclic environments and flexural loading. Cement and Concrete Research, 39(3), 206-226. https://doi.org/ 10.1016/j.cemconres.2008.12.003
[3]. Boumehraz, M. A., & Mellas, M. (2017). Evaluation on the durability of concrete sanitationnetwork of Ouargla- Algeria by non-destructive testing. Malaysian Journal of Civil Engineering, 29(3), 320-332. https://doi.org/ 10.11113/mjce.v29.56
[4]. de Larrard, F. (2002). Build Concrete: The Essentials on Material. Presses des Ponts.
[5]. Essawy, A. A., & Aleem, S. A. E. (2014). Physicomechanical properties, potent adsorptive and photocatalytic efficacies of sulfate resisting cement blends containing micro silica and nano-TiO2. Construction and Building Materials, 52, 1-8. https://doi.org/10.1016/ j.conbuildmat.2013.11.026
[6]. Eštokov, A., Harbuľáková, V. O., Luptáková, A., & Števulová, N. (2012). Study of the deterioration of concrete influenced by biogenic sulphate attack. Procedia Engineering, 42, 1731-1738. https://doi.org/10.1016/j. proeng.2012.07.566
[7]. Estoup, J. M., & Cabrillac, R. (1997). Corrosion of biological origin observed on concrete digestors. Construction and Building Materials, 4(11), 225-232.
[8]. Hasan, A. T., & Taha, S. (2012). The effect of sulfate on the electrical properties of cement pastes. World Applied Sciences Journal, 19(7), 957-961. https://doi.org/10.5829/ idosi.wasj.2012.19.07.2779
[9]. Hong, S. S., Lim, G. G., Lee, B. K., Lee, B. J., & Rho, J. S. (1999). Mechanical strength enhancement of lower hydraulicity cementitious solid wastes using anhydrite and pozzolanic materials. Cement and Concrete Research, 29(2), 215-221. https://doi.org/10.1016/S0008- 8846(98)00187-2
[10]. Jensen, H. S., Lens, P. N., Nielsen, J. L., Bester, K., Nielsen, A. H., Hvitved-Jacobsen, T., & Vollertsen, J. (2011). Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers. Journal of Hazardous Materials, 189(3), 685-691. https://doi.org/10.1016/j. jhazmat.2011.03.005
[11]. Khan, A. R., & Zafar, N. S. (2009). Performance of different types of Pakistani Cements Exposed to Aggressive Environments. Taylor & Francis Group, London (pp.103-104).
[12]. Maes, M., Caspeele, R., Heede, P. V. D., & Belie, N. D. (2012, September). Influence of sulphates on chloride diffusion and the effect of this on service life prediction of concrete in a submerged marine environment. In Life- Cycle and Sustainability of Civil Infrastructure Systems: Proceedings of the 3rd International Symposium on Life- Cycle Civil Engineering (IALCCE'12) (p. 205). CRC Press.
[13]. Makhloufi, Z., Kadri, E. H., Bouhicha, M., & Benaissa, A. (2012). Resistance of limestone mortars with quaternary binders to sulfuric acid solution. Construction and Building Materials, 26(1), 497-504. https://doi.org/10.1016/j. conbuildmat.2011.06.050
[14]. Naik, N. N., Jupe, A. C., Stock, S. R., Wilkinson, A. P., Lee, P. L., & Kurtis, K. E. (2006). Multi-mode X-ray study of sodium and magnesium sulfate attack on Portland cement paste. JCPDS-International Centre for Diffraction Data, 63-72.
[15]. Planel, D., Sercombe, J., Bescop, P. L., Adenot, F., Sellier, A., Capra, B., & Torrenti, J. M. (2001). Experimental and numerical study on the effect of sulfates on calcium leaching of cement paste. FRAMCOS, Cachan, France, 287-292.
[16]. Prasad, J., Jain, D. K., & Ahuja, A. K. (2006). Factors influencing the sulphate resistance of cement concrete and mortar. Asian Journal of Civil Engineering, 7(3), 259- 268.
[17]. Schmidt, T., Leemann, A., Gallucci, E., & Scrivener, K. (2011). Physical and microstructural aspects of iron sulfide degradation in concrete. Cement and Concrete Research, 41(3), 263-269. https://doi.org/10.1016/j. cemconres.2010.11.011
[18]. Shiping, W., Mauricio, S., David, T., & Chris, G. (2010). Physical and microstructural aspects of iron sulfide degradation in concrete. Elsevier, International Biodeterioration & Biodegradation, 64, 748-754.
[19]. Siad, H., Mesbah, H. A., & Bernard, S. K. (2010). Influence of natural pozzolan on the behavior of selfcompacting concrete under sulphuric and hydrochloric acid attacks, comparative study. The Arabian Journal for Science and Engineering, 35(1), 183-195.
[20]. Turchin, V., Yudina, L., & Sattarova, A. (2013). Research sulfate resistance of cement-containing composition. Procedia Engineering, 57, 1166-1172. https://doi.org/10.1016/j.proeng.2013.04.147
[21]. Zhang, M. H., Jiang, M. Q., & Chen, J. K. (2008). Variation of flexural strength of cement mortar attacked by sulfate ions. Engineering Fracture Mechanics, 75(17), 4948-4957. https://doi.org/10.1016/j.engfracmech. 2008.06.023