Brake Friction Materials - A Review

Naresh Kumar Konada*, K. N. S. Suman **
* Department of Mechanical Engineering, Anits Engineering College, Visakhapatnam, Andhra Pradesh, India.
** Department of Mechanical Engineering, Andhra University, AU College of Engineering, Visakhapatnam, Andhra Pradesh, India.
Periodicity:January - March'2020
DOI : https://doi.org/10.26634/jms.7.4.15520

Abstract

Friction materials present in an automobile breaking system is mainly responsible for controlling the automobile during running conditions. In recent years, with innovations in automobile sector, advancements in newly designed automobiles with varying design and high speeds are being launched in the markets, demanding prime challenges for the braking system designers to control the speed of the vehicle. After the phasing out asbestos as a brake friction material by many countries in the world, due to its carcinogenic property, automobile brake friction industry and researchers are looking for suitable alternatives to replace asbestos as friction material. This paper reviews several researches in this field and enables researchers to identify proper friction material responsible for stabilization of coefficient of friction and wear rate. This paper also gives an overview of the role of fiber, binder, and filler materials in improving the coefficient of friction. Finally, the effect of operating parameters, such as speed, temperature, pressure, and velocity on friction materials is studied.

Keywords

Brake Friction Materials, Friction and Wear, Squealing, Fade, Recovery.

How to Cite this Article?

Konada, N. K., & Suman, K. N. S. (2020). Brake Friction Materials - A Review, i-manager's Journal on Material Science, 7(4), 51-65. https://doi.org/10.26634/jms.7.4.15520

References

[1]. Abadi, S. B. K., Khavandi, A., & Kharazi, Y. (2010). Effects of mixing the steel and carbon fibers on the friction and wear properties of a PMC friction material. Applied Composite Materials, 17(2), 151-158. https://doi.org/10. 1007/s10443-009-9115-5
[2]. Almaslow, A., Ghazali, M. J., Talib, R. J., Ratnam, C. T., & Azhari, C. H. (2013). Effects of epoxidized natural rubber–alumina nanoparticles (ENRAN) composites in semi-metallic brake friction materials. Wear, 302(1-2), 1392-1396. https://doi.org/10.1016/j.wear.2013.01.033
[3]. Amaren, S. G., Yawas, D. S., & Aku, S. Y. (2013). Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad. Results in Physics, 3, 109-114. https://doi.org/10.1016/j.rinp.2013.06.004
[4]. Anoop, S., Natarajan, S., & Babu, S. K. (2009). Analysis of factors influencing dry sliding wear behaviour of Al/SiCp–brake pad tribosystem. Materials & Design, 30(9), 3831-3838. https://doi.org/10.1016/j.matdes.2009.03. 034
[5]. Aranganathan, N., & Bijwe, J. (2016a). Comparative performance evaluation of NAO friction materials containing natural graphite and thermo-graphite. Wear, 358, 17-22. https://doi.org/10.1016/j.wear.2016.03.032
[6]. Aranganathan, N., & Bijwe, J. (2016b). Development of copper-free eco-friendly brake-friction material using novel ingredients. Wear, 352, 1-33. https://doi.org/10. 1016/j.wear.2016.01.023
[7]. Aranganathan, N., Mahale, V., & Bijwe, J. (2016). Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests. Wear, 354, 69-77. https://doi.org/10.1016/j.wear.2016.03.002
[8]. Asif, M. (2012). Tribo-evaluation of Aluminium based metal matrix composites used for automobile brake pad applications. Plastic and Polymer Technology, 1(1), 9-14.
[9]. Barros, L. Y., Neis, P. D., Ferreira, N. F., Pavlak, R. P., Masotti, D., Matozo, L. T., & Andó, M. (2016). Morphological analysis of pad-disc system during braking operations. Wear, 352, 287-298. https://doi.org/10.1016/ j.wear.2016.02.005
[10]. Bian, G., & Wu, H. (2015). Friction performance of carbon/silicon carbide ceramic composite brakes in ambient air and water spray environment. Tribology International, 92, 1-11. https://doi.org/10.1016/j.triboint. 2015.05.023
[11]. Bian, G., & Wu, H. (2016). Friction surface structure of a Cf/C–SiC composite brake disc after bedding testing on a full-scale dynamometer. Tribology International, 99, 85- 95. https://doi.org/10.1016/j.triboint.2016.03.010
[12]. Blau, P. J., Jolly, B. C., Qu, J., Peter, W. H., & Blue, C. A. (2007). Tribological investigation of titanium-based materials for brakes. Wear, 263(7-12), 1202-1211. https://doi.org/10.1016/j.wear.2006.12.015
[13]. Boz, M., & Kurt, A. (2007). The effect of Al2O3 on the friction performance of automotive brake friction materials. Tribology International, 40(7), 1161-1169. https://doi.org/10.1016/j.triboint.2006.12.004
[14]. Cai, P., Li, Z., Wang, T., & Wang, Q. (2015). Effect of aspect ratios of aramid fiber on mechanical and tribological behaviors of friction materials. Tribology International, 92, 109-116. https://doi.org/10.1016/j. triboint.2015.05.024
[15]. Chan, D. S. E. A., & Stachowiak, G. W. (2004). Review of automotive brake friction materials. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(9), 953-966. https://doi.org/ 10.1243%2F0954407041856773
[16]. Cheng, D. Q., Wang, X. T., Zhu, J., Qiu, D. H., Cheng, X. W., & Guan, Q. F. (2009). Friction and wear behavior of carbon fiber reinforced brake materials. Frontiers of Materials Science in China, 3(1), 56-60. https://doi.org/ 10.1007/s11706-009-0012-5
[17]. Cho, K. H., Cho, M. H., Kim, S. J., & Jang, H. (2008). Tribological properties of potassium titanate in the brake friction material; morphological effects. Tribology Letters, 32(1), 59-66. https://doi.org/10.1007/s11249-008-9362-x
[18]. Coleman, J. N., Khan, U., Blau, W. J., & Gun'ko, Y. K. (2006). Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j. carbon.2006.02.038
[19]. Dadkar, N., Tomar, B. S., & Satapathy, B. K. (2009). Evaluation of fly ash-filled and aramid fibre reinforced hybrid Polymer Matrix Composites (PMC) for friction braking applications. Materials & Design, 30(10), 4369- 4376. https://doi.org/10.1016/j.matdes.2009.04.007
[20]. Dhand, V., Mittal, G., Rhee, K. Y., Park, S. J., & Hui, D. (2015). A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering, 73, 166- 180. https://doi.org/10.1016/j.compositesb.2014.12.011
[21]. Dhangar, A. D., Jani, R.J. (n.d). Review on wear measurement of automotive disc brake friction material International Journal of Innovative Research and Studies (IJIRS), 2, 404-411.
[22]. El-Tayeb, N. S. M., & Liew, K. W. (2008). Effect of water spray on friction and wear behaviour of noncommercial and commercial brake pad materials. Journal of Materials Processing Technology, 208(1-3), 135-144. https://doi.org/10.1016/j.jmatprotec.2007.12.111
[23]. Ertan, R., & Yavuz, N. (2010). An experimental study on the effects of manufacturing parameters on the tribological properties of brake lining materials. Wear, 268(11-12), 1524-1532. https://doi.org/10.1016/j.wear. 2010.02.026
[24]. Fiore, V., Scalici, T., Di Bella, G., & Valenza, A. (2015). A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74-94. https://doi.org/10.1016/ j.compositesb.2014.12.034
[25]. Garshin, A. P., Kulik, V. I., & Nilov, A. S. (2008). Braking friction materials based on fiber-reinforced composites with carbon and ceramic matrices. Refractories & Industrial Ceramics, 49(5), 391-396. https://doi.org/10. 1007/s11148-009-9099-6
[26]. Gilardi, R., Alzati, L., Thiam, M., Brunel, J. F., Desplanques, Y., Dufrénoy, P., & Bijwe, J. (2012). Copper substitution and noise reduction in brake pads: Graphite type selection Materials, 5(11), 2258-2269. https://doi.org/10.3390/ma5112258
[27]. Gurunath, P. V., & Bijwe, J. (2007). Friction and wear studies on brake-pad materials based on newly developed resin. Wear, 263(7-12), 1212-1219. https://doi.org/10.1016/j.wear.2006.12.050
[28]. Gyimah, G. K., Huang, P., & Chen, D. (2014). Dry sliding wear studies of copper-based powder metallurgy brake materials. Journal of Tribology, 136(4), 1-6. https://doi.org/10.1115/1.4027477
[29]. Hee, K. W., & Filip, P. (2005). Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear, 259(7-12), 1088-1096. https://doi.org/10.1016/j.wear.2005.02.083
[30]. Hodgson, R. (n.d). Friction Brake Theory. Academia (pp.179-190). https://www.academia.edu/28211743/ Textbook_on_Friction_Brake_Theory_2_
[31]. Idris, U. D., Aigbodion, V. S., Abubakar, I. J., & Nwoye, C. I. (2015). Eco-friendly asbestos free brake-pad: Using banana peels. Journal of King Saud University- Engineering Sciences, 27(2), 185-192. https://doi.org/10. 1016/j.jksues.2013.06.006
[32]. Ikpambese, K. K., Gundu, D. T., & Tuleun, L. T. (2014). Evaluation of Palm Kernel Fibers (PKFs) for production of asbestos-free automotive brake pads. Journal of King Saud University-Engineering Sciences, 1-9. https://doi. org/10.1016/j.jksues.2014.02.001
[33]. Ilanko, A. K., & Vijayaraghavan, S. (2016). Wear behavior of asbestos-free eco-friendly composites for automobile brake materials. Friction, 4(2), 144-152. https://doi.org/10.1007/s40544-016-0111-0
[34]. Jang, H., & Kim, S. J. (2000). The effects of antimony trisulfide (Sb S ) and zirconium silicate (ZrSiO ) in the 2 3 4 automotive brake friction material on friction characteristics. Wear, 239(2), 229-236. https://doi.org/10. 1016/s0043-1648(00)00314-8
[35]. Kameda, T., Takahashi, K., Kim, R., Jiang, Y., Movahed, M., Park, E. K., & Rantanen, J. (2014). Asbestos: use, bans and disease burden in Europe. World Health Organization, 92, 1-8. https://doi.org/10.2471/BLT.13.13 2118
[36]. Kumar, M., & Bijwe, J. (2010). NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer. Wear, 269(11-12), 826- 837. https://doi.org/10.1016/j.wear.2010.08.011
[37]. Kumar, M., & Bijwe, J. (2011). Composite friction materials based on metallic fillers: sensitivity of μ to operating variables. Tribology International, 44(2), 106- 113. https://doi.org/10.1016/j.triboint.2010.09.013
[38]. Kumar, M., & Bijwe, J. (2016). Non-asbestos organic (NAO) friction composites: Role of copper; its shape and amount. Wear, 358-359, 17-22. https://doi.org/10.1016/ j.wear.2010.10.068
[39]. Laden, K., Guerin, J. D., Watremez, M., & Bricout, J. P. (2000). Frictional characteristics of Al–SiC composite brake discs. Tribology Letters, 8(4), 237-247. http://doi.org/ 10.1023/A:1019159923619
[40]. Lazim, A. M., Kchaou, M., Hamid, M. A., & Bakar, A. A. (2016). Squealing characteristics of worn brake pads due to silica sand embedment into their friction layers. Wear, 358, 123-136. https://doi.org/10.1016/j.wear.2016.04.006
[41]. Liu, Y., Fan, Z., Ma, H., Tan, Y., & Qiao, J. (2006). Application of nano powdered rubber in friction materials. Wear, 261(2), 225-229. http://doi.org/10.1016/j.wear. 2005.10.011
[42]. Maleque, M. A., Atiqah, A., Talib, R. J., & Zahurin, H. (2012). New natural fibre reinforced aluminium composite for automotive brake pad. International Journal of Mechanical and Materials Engineering, 7(2), 166-170.
[43]. Maleque, M. A., Dyuti, S., & Rahman, M. M. (2010). Material selection method in design of automotive brake disc. In Proceedings of the World Congress on Engineering (Vol. 3), London, U.K.
[44]. Martinez, A. M., & Echeberria, J. (2016). Towards a better understanding of the reaction between metal powders and the solid lubricant Sb2S3 in a low-metallic brake pad at high temperature. Wear, 348, 27-42. https://doi.org/10.1016/j.wear.2015.11.014
[45]. Matájka, V., Lu, Y., Jiao, L., Huang, L., Martynková, G. S., & Tomášek, V. (2010). Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications. Tribology International, 43(1-2), 144-151. https://doi.org/10.1016/j. triboint.2009.05.007
[46]. Nagesh, S. N., Siddaraju, C., Prakash, S. V., & Ramesh, M. R. (2014). Characterization of brake pads by variation in composition of friction materials. Procedia Materials Science, 5, 295-302.
[47]. Nirmal, U., Hashim, J., & Ahmad, M. M. (2015). A review on tribological performance of natural fibre polymeric composites. Tribology International, 83, 77- 104. https://doi.org/10.1016/j.triboint.2014.11.003
[48]. Omrani, E., Menezes, P. L., & Rohatgi, P. K. (2016). State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal, 19(2), 717-736. https://doi.org/10. 1016/j.jestch.2015.10.007
[49]. Österle, W., Kloß, H., Urban, I., & Dmitriev, A. I. (2007). Towards a better understanding of brake friction materials. Wear, 263(7-12), 1189-1201. https://doi.org/10.1016/j. wear.2006.12.020
[50]. Öztürk, B., & Öztürk, S. (2011). Effects of resin type and fiber length on the mechanical and tribological properties of brake friction materials. Tribology Letters, 42(3), 339-350. https://doi.org/10.1007/s11249-011- 9779-5
[51]. Öztürk, B., Arslan, F., & Öztürk, S. (2013). Effects of different kinds of fibers on mechanical and tribological properties of brake friction materials. Tribology Transactions, 56(4), 536-545. https://doi.org/10.1080/ 10402004.2013.767399
[52]. Pickering, K. L., Efendy, M. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015. 08.038
[53]. Rehman, A., Das, S., & Dixit, G. (2012). Analysis of stir die cast Al–SiC composite brake drums based on coefficient of friction. Tribology International, 51, 36-41. https://doi.org/10.1016/j.triboint.2012.02.007
[54]. Satapathy, B. K., & Bijwe, J. (2004). Performance of friction materials based on variation in nature of organic fibres: Part I. Fade and recovery behaviour. Wear, 257 (5- 6), 573-584. https://doi.org/10.1016/j.wear.2004.03.003
[55]. Satapathy, B. K., & Bijwe, J. (2006). Composite friction materials based on organic fibres: Sensitivity of friction and wear to operating variables. Composites Part A: Applied Science and Manufacturing, 37(10), 1557- 1567. https://doi.org/10.1016/j.compositesa.2005. 11.002
[56]. Sharma, M., Gao, S., Mäder, E., Sharma, H., Wei, L. Y., & Bijwe, J. (2014). Carbon fiber surfaces and composite interphases. Composites Science and Technology, 102, 35-50. https://doi.org/10.1016/j. compscitech.2014.07.005
[57]. Shu, Y., Jie, C., Qizhong, H., Xiang, X., Tong, C., & Yunping, L. (2010). Effect of braking speeds on the tribological properties of carbon/carbon composites. Materials Transactions, 51(5), 1038-1043. https://doi.org/ 10.2320/matertrans.M2009390
[58]. Singh, T., & Patnaik, A. (2014). Performance assessment of lapinus-aramid based brake pad hybrid phenolic composites in friction braking. Archives of Civil and Mechanical Engineering, 1-11. https://doi.org/10. 1016/j.acme.2014.01.009
[59]. Singh, T., Patnaik, A., Satapathy, B. K., Kumar, M., & Tomar, B. S. (2013). Effect of nanoclay reinforcement on the friction braking performance of hybrid phenolic friction composites. Journal of Materials Engineering and Performance, 22(3), 796-805. https://doi.org/10.1016/j. triboint.2011.07.008
[60]. Telang, A. K., Rehman, A., Dixit, G., & Das, S. (2010). Alternate materials in automobile brake disc applications with emphasis on Al composites–a technical review. Journal of Engineering Research and Studies, 1(1), 35-46.
[61]. US Public Health Service, & US Department of Health and Human Services. (2001). Toxicological profile for asbestos. Atlanta, GA: Agency for Toxic Substances and Disease Registry.
[62]. Uyyuru, R. K., Surappa, M. K., & Brusethaug, S. (2006). Effect of reinforcement volume fraction and size distribution on the tribological behavior of Alcomposite/ brake pad tribo-couple. Wear, 260(11-12), 1248-1255. https://doi.org/10.1016/j.wear.2005.08.011
[63]. Vijay, R., Jees Janesh, M., Saibalaji, M. A., & Thiyagarajan, V. (2013). Optimization of tribological properties of nonasbestos brake pad material by using steel wool. Advances in Tribology, 1-9. https://doi.org/ 10.1155/2013/165859
[64]. Wahsltrom, J., Gventsadze, D., Olander, L., Kutelia, E., Gventsadze, L., & Tsurtsumia, O. (2011). A pin-on-disc investigation of novel nanoporous composite-based and conventional brake pad materials focusing on airborne wear particles. Tribol International, 44(12), 1838-1843. https://doi.org/10.1016/j.triboint.2011.07.008
[65]. Wahlström, J., Olander, L., & Olofsson, U. (2012). A pin-on-disc study focusing on how different load levels affect the concentration and size distribution of airborne wear particles from the disc brake materials. Tribology Letters, 46(2), 1838-1843. https://doi.org/10.1016/j. triboint.2011.07.008
[66]. Xiao, X., Yin, Y., Bao, J., Lu, L., & Feng, X. (2016). Review on the friction and wear of brake materials. Advances in Mechanical Engineering, 8(5), 1-10. https://doi.org/10.1177%2F1687814016647300
[67]. Yun, R., Filip, P., & Lu, Y. (2010-2019). Performance and evaluation of eco-friendly brake friction materials. Tribology International, 43(11). https://doi.org/10.1016/ j.triboint.2010.05.001
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.