References
[1]. Attiogbe, E. K., & Rizkalla, S. H. (1988). Response of concrete to sulfuric acid attack. ACI Materials Journal, 85(6), 481-488.
[2]. Ayub, T., Shafiq, N., Khan, S. U., & Nuruddin, M. (2013). Durability of concrete with different mineral admixtures: A review. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 7(8), 265-276.
[3]. Chang, Z. T., Song, X. J., Munn, R., & Marosszeky, M. (2005). Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack. Cement and Concrete Research, 35(8), 1486- 1494.
[4]. Dong, Q., Wu, H., Huang, B., Shu, X., & Wang, K. (2010). Development of a simple and fast test method for measuring the durability of Portland cement Pervious Concrete. ASCE Journal of Materials in Civil Engineering, Sn3149, 1-24.
[5]. El-Hachem, R., Rozière, E., Grondin, F., &Loukili, A. (2012). New procedure to investigate external sulphate attack on cementitious materials. Cement and Concrete Composites, 34(3), 357-364.
[6]. Fattuni, N. I., & Hughes, B. P. (1983). Effect of acid attack on concrete with different admixtures or protective coatings. Cement and Concrete Research, 13(5), 655- 665.
[7]. Gaedicke, C., Marines, A., & Miankodila, F. (2014). Assessing the abrasion resistance of cores in virgin and recycled aggregate pervious concrete. Construction and Building Materials, 68, 701-708.
[8]. Girardi, F., Vaona, W., & Di Maggio, R. (2010). Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack. Cement and Concrete Composites, 32(8), 595-602.
[9]. Haynes, H., O'Neill, R., & Mehta, P. K. (1996). Concrete deterioration from phusical attack by salts. Concrete International, 18(1), 63-68.
[10]. Hossack, A. M., & Thomas, M. D. (2015). The effect of temperature on the rate of sulfate attack of Portland cement blended mortars in Na SO solution. Cement and 2 4 Concrete Research, 73, 136-142.
[11]. Kawai, K., Yamaji, S., & Shinmi, T. (2005, April). Concrete deterioration caused by sulfuric acid attack. In International Conference on Durability of Building Materials and Components (pp. 17-20).
[12]. Kevern, J. T., Schaefer, V. R., & Wang, K. (2009). The effect of curing regime on pervious concrete abrasion resistance. Journal of Testing and Evaluation, 37(4), 337- 342.
[13]. Liu, S., & Wang, Z. (2014). Effect of limestone powder on acid attack characteristics of cement pastes. Materials Science, 20(4), 503-508.
[14]. Mehta, P. K. (2000). Sulfate attack on concrete separating myths from reality. Concrete International, 22(8), 57-61.
[15]. Merida, A., & Kharchi, F. (2015). Pozzolan concrete durability on sulphate attack. Procedia Engineering, 114, 832-837.
[16]. Najjar, M. F., Nehdi, M. L., Soliman, A. M., & Azabi, T. M. (2017). Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack. Construction and Building Materials, 137, 141-152.
[17]. Offenberg, M. (2012). Development of a new test method for assessing the potential raveling resistance of pervious concrete. In Pervious Concrete. ASTM International.
[18]. Scherer, G. W. (2004). Stress from crystallization of salt. Cement and Concrete Research, 34(9), 1613-1624.
[19]. Sun, J., & Chen, Z. (2018). Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technology, 338, 725-733.
[20]. Taku, K. J., Amartey, D. Y., & Kassar, T. (2015). Effect of acidic curing environment on the strength and durability of concrete. Equilibrium, 7(12), 8-13.
[21]. Wang, D., Zhou, X., Meng, Y., & Chen, Z. (2017). Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Construction and Building Materials, 147, 398-406.
[22]. Wu, H., Huang, B., Shu, X., & Dong, Q. (2010). Laboratory evaluation of abrasion resistance of Portland cement pervious concrete. Journal of Materials in Civil Engineering, 23(5), 697-702.