Blood Leukemia Detection using Neural Networks and Fuzzy Logic: A Survey and Taxonomy

Fameshwari Deshmukh*, Amar Kumar Dey**
*PG Scholar, Department of Electronics & Telecommunication, Bhilai Institute of Technology, Durg, Chhattisgarh, India.
**Assistant Professor, Department of Electronics and Telecommunication Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh,India.
Periodicity:July - September'2018

Abstract

Blood cancer or leukemia detection using microscopic images is a challenging task considering the fact that variations in blood cell patterns are miniscule in nature and human detection may be prone to errors due to inherent deficiencies or anomalies in the dataset or due to human errors. Hence using automated classification has been considered using data pre-processing techniques such as Artificial Neural Networks and Fuzzy Logic. Recently, a new domain of research called neuro-fuzzy systems has garnered a lot of attention due to its efficacy. This paper introduces the challenges faced in the detection and classification of blood leukemia. Along with it, the paper focuses on the various significant contributions in the field by different researchers. This may pave the path for further improvement in accuracy of classification of leukemia.

Keywords

Leukemia, Artificial Intelligence (AI), Artificial Neural Network (ANN), Fuzzy Logic, Neuro-Fuzzy Systems, Accuracy, Sensitivity

How to Cite this Article?

Fameshwari, and Dey, A.K., (2018). Blood Leukemia Detection Using Neural Networks And Fuzzy Logic: A Survey And Taxonomy. i-manager’s Journal on Image Processing, 5(3), 34-39.

References

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.