Application and Comparison of Optimal LQR Control Techniques for Engine Modeling

Shashidhar S. Gokhale*, Yathisha L. **, Sudarshan S. Patil Kulkarni ***
* Ph.D. Scholar, Department of Electronics, Mysore University, Karnataka, India.
** Associate Professor, Department of Electronics and Communication Engineering, ATME College of Engineering, Mysore, Karnataka, India.
*** Professor, Department of Electronics and Communication Engineering, Sri Jayachamarajendra College of Engineering, Mysore, Karnataka, India.
Periodicity:May - July'2018

Abstract

In the present scenario, the optimization of engine parameters is very much necessary for the smooth operation of automotive engines. This paper presents the three Optimal Linear Quadratic Control approaches for the state space engine model for the optimization of manifold pressure and engine speed state variables. The proposed three optimal controllers are Bryson, Bouderal, and Multistage Linear Quadratic Regulator (LQR) control techniques. The proposed controllers are applied and compared for the engine state space model using MATLAB/Simulink platform.

Keywords

LQR, Manifold Pressure, Engine Speed.

How to Cite this Article?

Gokhale, S.S., Yathisha, L., & Kulkarni, S. S. P. (2018). Application and Comparison of Optimal LQR Control Techniques for Engine Modeling. i-manager’s Journal on Instrumentation and Control Engineering, 6(3), 36-43.

References

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 200 35 35 200 15
Pdf 35 35 200 20
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.