References
[1]. Amisigo, B. A. & Van De Giesen, N. C. (2005). Using a spatio-temporal dynamic state-space model with the EM algorithm to patch gaps in daily riverflow series. Hydrology and Earth System Sciences Discussions, 9(3), 209-224.
[2]. Bakar, S. H. A., Jafari, A. M., & Khan, I. N. (2004). Flow duration matching technique - a case study, Rivers' 04, 1st International Conference on Managing Rivers in the 21st Century: Issues and Challenges (pp. 117-123).
[3]. Dastorani, M. T., Moghadamnia, A., Piri, J., & Rico-Ramirez, M. (2010). Application of ANN and ANFIS models for reconstructing missing flow data. Environmental Monitoring and Assessment, 166(1-4), 421-434.
[4]. Elshorbagy, A. A., Panu, U. S., & Simonovic, S. P. (2000a). Group-based estimation of missing hydrological data: I. Approach and general methodology. Hydrological Sciences Journal, 45(6), 849-866.
[5]. Elshorbagy, A. A., Panu, U. S., & Simonovic, S. P. (2000). Group-based estimation of missing hydrological data: II. Application to streamflows. Hydrological Sciences Journal, 45(6), 867-880.
[6]. Elshorbagy, A., Panu, U. S., & Simonovic, S. P. (2001). Analysis of cross-correlated chaotic streamflows. Hydrological Sciences Journal, 46(5), 781-793.
[7]. Elshorbagy, A., Simonovic, S. P., & Panu, U. S. (2000). Performance evaluation of artificial neural networks for runoff prediction. Journal of Hydrologic Engineering, 5(4), 424-427.
[8]. Gyau-Boakye, P., & Schultz, G. A. (1994). Filling gaps in runoff time series in West Africa. Hydrological Sciences Journal, 39(6), 621-636.
[9]. Honghai, F., Guoshun, C., Cheng, Y., Bingru, Y., &Yumei, C. (2005, September). A SVM regression based approach to filling in missing values. In International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (pp. 581-587). Springer, Berlin, Heidelberg.
[10]. Jónsdóttir, J. F., Uvo, C. B., & Clarke, R. T. (2008). Filling gaps in measured discharge series with model-generated series. Journal of Hydrologic Engineering, 13(9), 905-909.
[11]. Kim, T., Sung, K., & Heo, J. H. (2010). Hydrologic data calibration using Artificial Neural Network and mutual information. HIC 2010, 9th International Conference on Hydroinformatics (pp. 598-602).
[12]. Mfwango, L. H., Salim, C. J., & Kazumba, S. (2018). Estimation of missing river flow data for hydrologic analysis: The case of Great Ruaha River catchment. Hydrology Current Ressearch, 9(2), 299.
[13]. Mispan, M. R., Rahman, N. F. A., Ali, M. F., Khalid, K., Bakar M. H. A., & Haron, S. H. (2015). Missing river discharge data imputation approach using Artificial Neural Network. ARPN Journal of Engineering and Applied Sciences, 10(22),10480-10485.
[14]. Ng, W. W., Panu, U. S., & Lennox, W. C. (2009). Comparative studies in problems of missing extreme daily streamflow records. Journal of Hydrologic Engineering, 14(1), 91-100.
[15]. Papadakis, I., Napiorkowski, J., & Schultz, G. A. (1993). Monthly runoff generation by non-linear model using multispectral and multitemporal satellite imagery. Advances in Space Research, 13(5), 181-186.
[16]. Starrett, S. K., Starrett, S. K., Heier, T., Su, Y., Tuan, D., & Bandurraga, M. (2010). Filling in missing peak flow data using Artificial Neural Networks. ARPN Journal of Engineering and Applied Sciences, 5(1), 49-55.
[17]. Sviercoski, R. F., Travis, B. J., & Eggert, K. (2016, October). Description of data reanalysis of daily discharge and gauge height over the Amazon River Basin. In AIP Conference Proceedings (Vol. 1773, No. 1, p. 110013). AIP Publishing.
[18]. Taylor, J. C., van de Giesen, N., & Steenhuis, T. S. (2006). West Africa: Volta discharge data quality assessment and use 1. Jawra Journal of the American Water Resources Association, 42(4), 1113-1126.
[19]. Tencaliec, P., Favre, A. C., Prieur, C., & Mathevet, T. (2015). Reconstruction of missing daily streamflow data using dynamic regression models. Water Resources Research, 51(12), 9447-9463.
[20]. Tfwala, S. S., Wang, Y. M., & Lin, Y. C. (2013). Prediction of missing flow records using multilayer perceptron and coactive neurofuzzy inference system. The Scientific World Journal, 2013, 7, http://dx.doi.org/10.1155/2013/584516