References
[1]. Adalier, K., & Aydingun, O. (2003). Numerical analysis of seismically induced liquefaction in earth embankment foundations. Part II: Application of remedial measures. Canadian Geotechnical Journal, 40, 766-779.
[2]. Adalier, K., Elgamal, A. W., & Martin, G. R. (1998). Foundation liquefaction countermeasures for earth embankments. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(6), 500-517.
[3]. Adalier, K., Pamuk, A., & Zimmie, T. F. (2004). Earthquake retrofit of highway/railway embankments by sheet-pile walls. Geotechnical and Geological Engineering, 22, 73–88.
[4]. Andrus, R.D., & Chung, R.M. (1995). Ground improvement techniques for liquefaction remediation near existing lifelines. NISTIR report # 5714, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.
[5]. Arias, A. (1970). A measure of earthquake intensity. In R.J. Hansen (Ed.), Seismic design for nuclear power plants (pp. 438-383). Cambridge, Mass: MIT Press.
[6]. Aydingun, O., & Adalier, K. (2003). Numerical analysis of seismically induced liquefaction in earth embankment foundations. Part I: Benchmark model. Canadian Geotechnical Journal, 40, 753-765.
[7]. Bardet, J. P., Idriss, I. M., & O'Rourke, T. D. (1997). North America-Japan workshop on the geotechnical aspects of the Kobe, Loma Prieta, and Northridge earthquakes. A report to National Science Foundation, Air Force Office of Scientific Research, and Japanese Geotechnical Society, Osaka, Japan.
[8]. Bell, F.G. (1993). Engineering treatment of soils. London: E and FN SPON.
[9]. Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4), 1482-1498.
[10]. Das, B. M. (1999). Principles of foundation engineering (4th ed.). Brooks/Cole Publishing Company.
[11]. Elgamal, A., Parra, E., Yang, Z., & Adalier, K. (2002). Numerical analysis of embankment foundation liquefaction countermeasures. Journal of Earthquake Engineering 6(4), 447-471.
[12]. Ferritto, J. M. (1997). Seismic design criteria for soil liquefaction. Technical report TR-2077-SHR, Naval Facilities Engineering Service Center, Port Hueneme, California.
[13]. Ferritto, J. M., Dickenson, S., Priestley, N., Werner, S., Taylor, C., Burke, D., … Kelly, S. (1999). Seismic criteria for California marine oil terminals. Naval Facilities Engineering Center, Shore Facilities Department, Structures Division, Port Hueneme, California.
[14]. Gallagher, P. M., Pamuk, A., & Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. Journal of Materials in Civil Engineering, 19(1), 33-40.
[15]. Hausmann, M.R. (1990). Engineering principles of ground modifications. New York: McGraw-Hill.
[16]. Honda, T., Tanaka, T., Towhata, I., & Tamate, S. (2005). Mitigation techniques of damages of quay walls due to seismic liquefaction. Proceedings of the 5th workshop on safety and stability of infrastructures against environmental impacts (pp. 39-46). De La Salle University, Manila, Philippines.
[17]. Jafari-Mehrabadi, A. (2006). Seismic liquefaction countermeasures for waterfront slopes. (Unpublished doctoral dissertation). Memorial University, St. John's, Canada.
[18]. Jafari-Mehrabadi, A., & Popescu, R. (2006). Study on effectiveness of liquefaction countermeasures using fragility curves. Proceedings of the 59th Canadian Geotechnical Conference (pp. 649-655). Vancouver, Canada.
[19]. Keanne, C. M., & Prevost, J. H. (1989). An analysis of earthquake data observed at the Wildlife Liquefaction Array Site, Imperial County, California. Proceedings of the 2nd U.S.-Japan workshop on liquefaction, large ground deformations and their effects on lifelines (pp. 176-192). New York, NY.
[20]. Kobayashi, Y., & Towhata, I. (2005). Three dimensional analysis on lateral flow of liquefied ground and its mitigation by sheet pile walls. International Journal of Computational Fluid Dynamics 19(1), 93-100.
[21]. Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice-Hall.
[22]. Mroz, Z. (1967). On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids, 15, 163-175.
[23]. Popescu, R. (2002). Finite element assessment of the effects of seismic loading rate on soil liquefaction. Canadian Geotechnical Journal, 39, 331-344.
[24]. Popescu, R., & Prevost, J. H. (1993). Centrifuge validation of a numerical model for dynamic soil liquefaction. Soil Dynamics and Earthquake Engineering, 12, 73-90.
[25]. Popescu, R., & Prevost, J. H. (1995). Comparison between VELACS numerical class “A” predictions and centrifuge experimental soil test results. Soil Dynamics and Earthquake Engineering, 14, 79-92.
[26]. Popescu, R., Prevost, J. H., Deodatis, G., & Chakrabortty, P. (2006). Dynamics of nonlinear porous media with applications to soil liquefaction. Soil Dynamics and Earthquake Engineering, 26(6-7), 648-665.
[27]. Prevost, J. H. (1985). A simple plasticity theory for frictional cohesinless soils. Soil Dynamics and Earthquake Engineering, 4(1), 9-17.
[28]. Prevost, J. H. (1989). DYNA1D, a computer program for nonlinear seismic site response analysis. Technical report NCEER-89-0025, National Center for Earthquake Engineering Research, State University of New York at Buffalo.
[29]. Prevost, J. H. (2002). DYNAFLOW - Version 02 User's manual. Princeton University, Princeton, NJ.
[30]. Riemer, M. F., Lok, T. M., & Mitchell, J. K. (1996). Evaluating effectiveness of liquefaction remediation measures for bridges. Proceedings of the 6th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction (pp. 441-455). Buffalo, NY.
[31]. Seed, R. B., Cetin, K. O., Moss, R. E. S., Kammerer, A. M., Wu, J., Pestana, J. M., Faris, A. (2003). Recent advances in soil liquefaction engineering: A unified and consistent framework. Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar. H.M.S. Queen Mary, Long Beach, California.
[32]. Seid-Karbasi, M. (2003). Review of input motion time histories suggested for dynamic testing in C-CORE centrifuge facilities. Report No. 2003/01, Civil Engineering Department of University of British Columbia, Vancouver, Canada.
[33]. Shinozuka, M., Feng, M. Q., Lee, J., & Naganuma, T. (2000). Statistical analysis of fragility curves. Journal of Engineering Mechanics, 126(12), 1224-1231.
[34]. TXI Chaparral Steel (2003). Structural shapes technical manual. Version 3.0.
[35]. Uniform Building Code (1994). International Conference of Building Officials, ICBO, 2. Whittier, CA.
[36]. Yanagihara, S., Takeuchi, M., & Ishihara, K. (1991). Dynamic behavior of embankment on locally compacted sand deposits. Proceedings of the 5th International Conference on Soil Dynamics and Earthquake Engineering (pp. 365-376). New York: Computational Mechanics Publication, Boston, and Elsevier Applied Science.