Design of RF MEMS Capacitive Shunt Switch for Ku-Ka Band with Low Activation Voltage

Piyush Bhatasana*, Dhaval Pujara**, Subhash Chandra Bera***


This paper proposes design of a zig-zag shaped RF MEMS capacitive shunt switch with low spring constant and low activation voltage of the order of 4.7V. In this design, there are two actuation electrodes and a separate signal line. Both electrodes and a signal line are arranged such that, the whole arrangement isolates the DC static charge and the input operating signal. The switch return-loss in up-state condition and the isolation in down-state condition were found more than 20dB over a wide frequency band of 18 to 51GHz.The switch yields insertion loss in up-state and return-loss in downstatecondition, lower than 0.5dB at same frequency band. The simulated results were verified through analytical method and found in close agreement.


Activation Voltage, Actuators, Coplanar Wave Guide (CPW), Down-State, Up-State.

How to Cite this Article?

Bhatasana.P., Pujara.D and Bera. S.C (2018). Design of RF MEMS Capacitive Shunt Switch for Ku-Ka Band with Low Activation Voltage. i-manager's Journal on Electronics Engineering, 8(2), 27-32.


[1]. Petersen, K. E. (1979). Micromechanical membrane switches on silicon. IBM Journal of Research and Development, 23(4), 376-385.
[2]. Rebeiz, G. M. (2004). RF MEMS: theory, design, and technology. John Wiley & Sons.
[3]. Rebeiz, G. M., & Muldavin, J. B. (2001). RF MEMS switches and switch circuits. IEEE Microwave magazine, 2(4), 59-71.
[4]. Nguyen, C. C., Katehi, L. P., & Rebeiz, G. M. (1998). Micromachined devices for wireless communications. Proceedings of the IEEE, 86(8), 1756-1768.
[5]. Fernández-Bolaños, M., Perruisseau-Carrier, J., Dainesi, P., & Ionescu, A. M. (2008). RF MEMS capacitive switch on semi-suspended CPW using low-loss highresistivity silicon substrate. Microelectronic Engineering, 85(5-6), 1039-1042.
[6]. Rebeiz, G. M., Patel, C. D., Han, S. K., Ko, C. H., & Ho, K. M. (2013). The search for a reliable MEMS switch. IEEE Microwave Magazine, 14(1), 57-67.
[7]. Kim, J., Herrault, F., Yu, X., Kim, M., Shafer, R. H., & Allen, M. G. (2013). Microfabrication of air core power inductors with metal-encapsulated polymer vias. Journal of Micromechanics and Microengineering, 23(3), 035006.
[8]. Demirel, K., Yazgan, E., Demir, ?., & Ak?n, T. (2015). C a n t i l e v e r t y p e r a d i o f r e q u e n c y microelectromechanical systems shunt capacitive s w i t c h d e s i g n a n d f a b r i c a t i o n . J o u r n a l o f Micro/Nanolithography, MEMS, and MOEMS, 14(3), 035005.
[9]. Angira, M., & Rangra, K. (2015). Design and investigation of a low insertion loss, broadband, enhanced self and hold down power RF-MEMS switch. Microsystem Technologies, 21(6), 1173-1178.
[10]. Yao, Z. J., Chen, S., Eshelman, S., Denniston, D., & Goldsmith, C. (1999). Micromachined low-loss microwave switches. Journal of Microelectromechanical Systems, 8(2), 129-134.
[11]. Muldavin, J. B., & Rebeiz, G. M. (2000). High-isolation CPW MEMS shunt switches. 2. Design. IEEE Transactions on Microwave Theory and Techniques, 48(6), 1053-1056.
[12]. Lazaro, A., Girbau, D., Pradell, L., & Nebot, A. (2007). Nonlinear actuation model for lateral electrostaticallyactuated DC-contact RF MEMS series switches. Microwave and Optical Technology Letters, 49(6), 1238- 1241.
[13]. Ruan, M., Shen, J., & Wheeler, C. B. (2001). Latching m i c r o m a g n e t i c r e l a y s . J o u r n a l o f Microelectromechanical Systems, 10(4), 511-517.
[14]. Ke, F., Miao, J., & Wang, Z. (2009). Ohmic series radio-frequency microelectromechanical system switch w i t h c o r r u g a t e d d i a p h r a g m . J o u r n a l o f Micro/Nanolithography, MEMS, and MOEMS, 8(2), 021122.
[15]. Daneshmand, M., Fouladi, S., Mansour, R. R., Lisi, M., & Stajcer, T. (2009). Thermally actuated latching RF MEMS switch and its characteristics. IEEE Transactions on Microwave Theory and Techniques, 57(12), 3229-3238.
[16]. Bhatasana, P., Pujara, D., & Bera, S. C. (2015, December). Movable parallel plate RF MEMS switch with wide frequency response. In Applied Electromagnetics Conference (AEMC), 2015 IEEE (pp. 1-2). IEEE.
If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.

Purchase Instant Access

Single Article

Print 35 35 200
Online 35 35 200
Print & Online 35 35 400