0.95 Mn0.05Sm2xFe2-2xO4 and Mg0.95 Mn0.05+xZrxFe2-2xO4 are prepared; where x varies 0.0 to 0.5 in steps of 0.1. These are prepared by the standard conventional ceramic method to obtain bulk size materials. Nanosize ferrites are synthesized by citrate sol-gel auto combustion method. These are characterized with X-Ray Diffraction (XRD); spectroscopic studies have been carried out by Fourier-transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) spectroscopy techniques. The observed values of nano-size materials absorption bands are compared with bulk size materials for both the substituents. Through ESR measurements, g- factor, line width, and resonance field values have been evaluated; which are interpreted based on the significant role played by the orbital angular momentum. The decrease of resonance line width shows an advantage of the materials to have power applications (cores of transformers) by resulting in low electric loss. The main objective of this paper is spectroscopic study. In future, the spectral study may play an important tool to understand and study multiferroic behavior of Sm/Zr substituted Mg-Mn ferrites.

">

Influence of Sm/Zr on Spectroscopic Properties of Mg-Mn Ferrites

G. Bhanu Praveen *, A. D. P. Rao**
* Research Scholar, Department of Nuclear Physics, Andhra University, Visakhapatnam, India.
** Registrar, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India.
Periodicity:April - June'2018
DOI : https://doi.org/10.26634/jms.6.1.14067

Abstract

Samarium and Zirconium substituted Mg-Mn ferrites having the chemical compositions Mg0.95 Mn0.05Sm2xFe2-2xO4 and Mg0.95 Mn0.05+xZrxFe2-2xO4 are prepared; where x varies 0.0 to 0.5 in steps of 0.1. These are prepared by the standard conventional ceramic method to obtain bulk size materials. Nanosize ferrites are synthesized by citrate sol-gel auto combustion method. These are characterized with X-Ray Diffraction (XRD); spectroscopic studies have been carried out by Fourier-transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) spectroscopy techniques. The observed values of nano-size materials absorption bands are compared with bulk size materials for both the substituents. Through ESR measurements, g- factor, line width, and resonance field values have been evaluated; which are interpreted based on the significant role played by the orbital angular momentum. The decrease of resonance line width shows an advantage of the materials to have power applications (cores of transformers) by resulting in low electric loss. The main objective of this paper is spectroscopic study. In future, the spectral study may play an important tool to understand and study multiferroic behavior of Sm/Zr substituted Mg-Mn ferrites.

Keywords

Absorption Band, Force Constant, Elastic Modulus, g-factor, Resonance Field.

How to Cite this Article?

Praveen, G. B., and Rao, A.D.P. (2018). Influence of Sm/Zr on Spectroscopic Properties of Mg-Mn Ferrites. i-manager’s Journal on Material Science, 6(1), 20-30. https://doi.org/10.26634/jms.6.1.14067

References

[1]. Bhatu, S. S., Lakhani, V. K., Tanna, A. R., Vasoya, N. H., Buch, J. U., Sharma, P. U., ... & Modi, K. B. (2007). Effect of nickel substitution on structural, infrared and elastic properties of lithium ferrite. Indian Journal of Pure & Applied Physics, 45, 596-608.
[2]. Cao, L. J., Zhou, Q. H., Li, G. U., Shen, H. X., Li, Q. H., Ping, L. A. N., & Yan, F. A. N. G. (2012). Preparation and characterization of composite microspheres of nano zinc ferrite/poly (D, L-lactide-co-alanine). Transactions of Nonferrous Metals Society of China, 22(2), 360-365.
[3]. Chu, N., Wang, X., Liu, Y., Jin, H., Wu, Q., Li, L., ... & Ge, H. (2009). Magnetic properties of low Mn-doped NiCuZn nanocrystalline ferrites. Journal of Alloys and Compounds, 470(1-2), 438-442.
[4]. Dahotre, S. G., & Singh, L. N. (2011). Study of magnetic properties of nanostructured Mn-Zn ferrite. Archives of Physics Research, 2(1), 81-89.
[5]. De, M., Mukherjee, A., & Tewari, H. S. (2015). Characterization of cadmium substituted nickel ferrites prepared using auto-combustion technique. Processing and Application of Ceramics, 9(4), 193-197.
[6]. Diehl, M. R., Steuerman, D. W., Tseng, H. R., Vignon, S. A., Star, A., Celestre, P. C., ... & Heath, J. R. (2003). Single‐walled carbon nanotube based molecular switch tunnel junctions. ChemPhysChem, 4(12), 1335-1339.
[7]. Electron Spin Resonance Tutorial. (2002). Retrieved from http://www.chm.bris.ac.uk/emr/Phil/Phil_1/p_1.html
[8]. Evisa. (n.d). Instrument Database: JEOL - JES-FA100 Electron Spin Resonance Spectrometry. Retrieved from http://www.speciation.net/Database/Instruments/JEOL/JES FA100-Electron-Spin-Resonance-Spectrometry-;i43
[9]. FTIR-8400S Shimadzu FTIR spectrometer. Retrieved from https://www.researchgate.net/.../Is_FTIR...FTIR.../FTIR- 8400S.pdf
[10]. Hutamaningtyas, E., Wijayanta, A. T., & Purnama, B. (2016, November). FTIR and structural properties of coprecipitated cobalt ferrite nano particles. In Journal of Physics: Conference Series (Vol. 776, No. 1, p. 012023). IOP Publishing.
[11]. Jahn, H. A., & Teller, E. (1937). Stability of polyatomic molecules in degenerate electronic states-I-Orbital degeneracy. Proc. R. Soc. Lond. A, 161(905), 220-235.
[12]. Kakani, S. L., & Hemrajani, C. (1997). Text Book of Solid State Physics, 3rd Ed. Sultan Chand and Sons.
[13]. Kumar, S., Kumar, R., Dogra, A., Reddy, V. R., & Banerjee, A. (2007). Multiferroic behaviour of Ti doped Mg0.95 Mn0.05Fe2O4 . Indian Journal of Pure and Applied Physics, 45(1), 31-36.
[14]. Mazen, S. A., & Elmosalami, T. A. (2011). Structural and elastic properties of Li-Ni ferrite. ISRN Condensed Matter Physics, 2011.
[15]. Meher, V. K., Satish Kumar, A., Samatha, K., Rao, A. D. P. (2012). Elastic behavior of Mo6+ substituted lithium ferrites. International Journal of Scientific and Research Publications, 2(7), 1-3.
[16]. Modi, K. B., Tanna, P. V., Laghate, S. S., & Joshi, H. H. (2000). The effect of Zn+ 2 substitution on some structural properties of CuFeCrO4 system. Journal of Materials Science Letters, 19(13), 1111-1113.
[17]. Modi, K. B., Chhantbar, M. C., Sharma, P. U., & Joshi, H.  H. (2005). Elastic constants determination for Fe3+ substituted YIG through infra-red spectroscopy and heterogeneous metal mixture rule. Journal of Materials Science, 40(5), 1247-1249.
[18]. Modi, K. B., Trivedi, U. N., Sharma, P. U., Lakhani, V. K., Chhantbar, M. C., & Joshi, H. H. (2006). Study of elastic properties of fine particle copper-zinc ferrites through infrared spectroscopy. Indian Journal of Pure & Applied Physics, 44,165-168.
[19]. Mohseni, H., Shokrollahi, H., Sharifi, I., & Gheisari, K. (2012). Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process. Journal of Magnetism and Magnetic Materials, 324(22), 3741-3747.
[20]. Msomi, J. Z., Moyo, T., Doyle, T. B. (2007). Magnetic properties of bulk and nano-sized (Zn, Cu, Cd)0.5 Ni0.5 Fe2 Oferrites. Journal of Magnetism and Magnetic Materials, 310(2), 2534-2536.
[21]. Naidu, V., Devi, S. G., Legadevi, R., & Priya, L. (2012). Electro Paramagnetic resonance studies to determine the dopant site occupancy of Dy-Sm doped magnesium ferrite for micro strip patch antenna substrate. International Journal of Computer Applications, 48(15), 10-14.
[22]. Potakova, V. A., Zverv, N. D., & Romanov, V. P. (1972). Infrared andMössbauer measurements on spinel ferrites of the Ni1-x-y Fex Zny Fe2 O4 system. Physica Status Solidi (a), 12(2), 623-627.
[23]. Rahman, M. A., Gafur, M. A., & Sarker, M. A. R. (2015). Impact of doping on structural, electronic and optical properties of cobalt ferrite prepared by solid-state reaction. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 2(1), 99-107.
[24]. Raj, B., & Palanichamy, P. R. (2004). Science and Technology of Ultrasonics. Narosa Publ. House, New Delhi.
[25]. Raju, M. K. (2015). FT-IR studies of Cu substituted Ni-Zn ferrites for structural and vibrational investigations. Chem. Sci. Trans., 4(1), 137-142.
[26]. Rao, B. V., Rao, A. D. P., & Reddy, V. R. (2013). Influence of Mo6+ on FTIR and Mossbauer spectroscopic properties of copper ferrite. International Journal of Innovative Research in Science, Engineering and technology, 2(12), 7768- 7779.
[27]. Ravinder, D., & Manga, T. A. (2000). Elastic behaviour of Cu–Cd ferrites. Journal of Alloys and Compounds, 299(1- 2), 5-8.
[28]. Shafi, K. V., Gedanken, A., Prozorov, R., & Balogh, J. (1998). Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chemistry of Materials, 10(11), 3445-3450.
[29]. Shankaramurthy, G. J., & Jayanna, H. S. (2016). Structural and DC conductivity studies of Sm substituted Ni- Zn Ferrites. Indian Journal of Applied Research, 6(4).
[30]. Tewari, B. S., Dhyani, A., Joshi, S. K., Dubey, S., & Pandey, K. (2014, April). Study of Magnetic Property of Sn Doped Ni-Zn-Fe Nanoparticles. In Conference Papers in Science (Vol. 2014). Hindawi Publishing Corporation.
[31]. Thomas, M., & George, K. C. (2009). Infrared and magnetic study of nanophase Zinc ferrite. Indian Journal of Pure & Applied Physics, 47, 81-86.
[32]. Waldron, R. D. (1955). Infrared spectra of ferrites. Physical Review, 99(6), 1725-1727.
[33]. Wooster, W. A. (1953). Physical properties and atomic arrangements in crystals. Reports on Progress in Physics, 16(62).
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.