Pavement is the part of the road or street, consisting of various materials and that are placed on the natural ground or in landfills, in order to directly support traffic. Nowadays one of the coatings used in the design of pavements is precast concrete paver blocks. The application of pavements which use precast concrete blocks were generally associated with sidewalks and access the residential areas. They can also be used in gasoline service stations, parking lots, and sometimes bus bays (Morgado, 2008). Concrete paver block not only provide a functional, hard-wearing surface, and minimum maintenance, but it also harmonizes with the environment. With a structural behaviour similar to that of flexible pavements, the concrete block pavements allow the repairs without leaving a trace. The aim of this study is to investigate the effect of coir fibre on physical properties of concrete. The paver blocks made of FRC concrete may serve as the placement for conventional pavements. Mix design is used as an experimental tool to evaluate the optimum content of cement, aggregates, water and concrete mix properties in-line with the various standards and specifications conforming to the Indian climatic conditions. Various properties of materials have been tested before using it for the mix. Paver blocks of 0% fibre, coir fibres of 0.1%, 0.2%, 0.3%, 0.4%, Recron 3S polyester fibres of 0.1%, 0.2%, and 0.3% to the total weight of cement, Coarse aggregate, Fine aggregate, and water are prepared and tested for Compressive strength, Rebound Hammer test, Water Absorption test, and Ultrasonic pulse velocity test. It is observed from results that there is 10.3% increase in compressive strength in fibre reinforced paver blocks when compared to conventional concrete paver blocks. The compressive strength of the paver blocks with coir fibres 0.3% show 8% more strength when compared to the paver block with 0.1% coir fiber. The compressive strength of the paver blocks with an optimum fiber content of Recron 3S polyester fibres shows 5.5% more compressive strength than the paver blocks with coir fibers of optimum fiber content.