References
[1]. 3D Concrete House Printer. Retrieved from
www.totalkustom.com/ and http://www.zeit.de/digital/
[ 2 ] . 3D Print Canal House.Retrieved from
http://3dprintcanalhouse.com/construction-technique
[3]. American Society of Testing Material. (2009).
Standard Terminology for Additive Manufacturing
Technologies (ASTM F2792-10).
[4]. Anderson, E. (2013). Additive manufacturing in China:
threats, opportunities, and developments (Part I). SITC
Bulletin Analysis.
[5]. Bold Economy. (2013) .Retrieved from
http://www.boldeconomy.com/aktuell-3d-waffengesetz;
accessed on 5 December 2013
[6]. Bradshaw, S., Bowyer, A., & Haufe, P. (2010). The
intellectual Property implications of low 3D Printing.
ScriptEd2010, 7(1), 5-31.
[7]. Buswell, R. A., Soar, R. C., Gibb, A. G., & Thorpe, T.
(2005). The potential of freeform construction processes.
16th Solid Freeform Fabrication Symposium, SFF 2005.
[8]. Buswell, R. A., Thorpe, A., Soar, R. C., & Gibb, A. G. F.
(2008). Design, data and process issues for mega-scale
rapid manufacturing machines used for construction.
Automation in Construction, 17(8), 923–929.
[9]. Buswell, R.A. (2007). Freeform Construction: Mega-
Scale Rapid Manufacturing for Construction. Automation in
Construction, 16(2), 224-231.
[10]. Charron, K. (2015). WinSun China builds world's first 3D
printed villa and tallest 3D printed apartment building.
3ders.org, http://www.3ders.org/articles/20150118-winsunbuilds-
world-first-3d-printed-villa-and-tallest-3d-printedbuilding-
in-china.html (May 18, 2015).
[11]. Chien, S., Choo, S., Schnabel, M. A., Nakapan, W.,
Kim, M. J., & Roudavski (2016). Parametric Customisation
of a 3D Concrete Printed Pavilion. Funded under SURF
201501 research grant of XJTLU.
[12]. Coventry, S., Woolveridge, C., & Hillier, S. (1999). The
Reclaimed and Recycled Construction Materials
Handbook. CIRIA, London, UK.
[13]. Dini Enrico, D_Shape, 2007.
[14]. Evans, M. A., & Ian Campbell, R. (2003). A
comparative evaluation of industrial design models
produced using rapid prototyping and workshop-based
fabrication techniques. Rapid Prototyping Journal, 9(5),
344-351.
[15]. Gosselin, C., Duballet, R., Roux, P., Gaudillière, N.,
Dirrenberger, J., & Morel, P. (2016). Large-scale 3D printing
of ultra-high performance concrete–a new processing
route for architects and builders. Materials & Design, 100,
102-109.
[16]. Handelsblatt Online. (2013). USA verlängernVerbot
von Plastikwaffen.
[17]. Khoshnevis, B. (2004). Automated construction by
contour crafting-related robotics and information
technologies. Automation in Construction, 13(1), 5-19.
[18]. Khoshnevis, B., & Dutton, R. (1998). Innovative rapid
prototyping process makes large sized, smooth surfaced
complex shapes in a wide variety of materials. Materials
Technology, 13(2), 53-56.
[19]. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G.,
& Thorpe, T. (2012a). Mix design and fresh properties for
high-performance printing concrete. Materials and
Structures, 45(8), 1221-1232.
[20]. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R.,
Gibb, A. G., & Thorpe, T. (2012b). Hardened properties of
high-performance printing concrete. Cement and
Concrete Research, 42(3), 558-566.
[21]. Lilliman, M., Austin, S., Edmondson, S., & Christie, S.
(2014). Rheological Control of Concrete for 3D Printing.
Rheology of Building Materials, 2014.
[22]. Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G.,
& Thorpe, T. (2012). Developments in construction-scale
additive manufacturing processes. Automation in Construction, 21, 262-268.
[23]. Lim, S., Buswell, R. A., Le, T. T., Wackrow, R., Austin, S. A.,
Gibb, A. G., & Thorpe, T. (2011). Development of a viable
concrete printing process. Proceedings of 28th Int.
Symposium on Automation & Robotics in Construction,
(ISARC 2011) (pp. 665-670), Seoul, South Korea.
[24]. Lim, S., Le, T., Webster, J., Buswell, R., Austin, A., Gibb,
A., & Thorpe, T. (2009). Fabricating construction
components using layered manufacturing technology. In
Global Innovation in Construction Conference (pp. 512-
520).
[25]. Panda, B., Tay, Y., Paul, S. C., Jen, T. M., Leong, K., &
Gibson, I. (2016). Current Challenges and Future
Perspectives of 3D Concrete Printing. 2nd International
Conference on Progress in Additive Manufacturing (Pro-
AM 2016), Singapore.
[26]. Pegna, J. (1997). Exploratory investigation of solid
freeform construction. Automation in Construction, 5(5),
427-437.
[27]. Perrot, A., Rangeard, D., & Pierre, A. (2016). Structural
built-up of cement-based materials used for 3D-printing
extrusion techniques. Materials and Structures, 49(4), 1213- 1220.
[28]. Rebolj, D. & Tibaut, A. (2012). Analyzing Trends of
Automated Construction. International Conference of
Construction (pp. 1-8).
[29]. Roodman, D. M., Lenssen, N. K., & Peterson, J. A.
(1995). A building revolution: how ecology and health
concerns are transforming construction (pp. 11-11).
Washington, DC: Worldwatch Institute..
[30]. Vince Lattanzio, (2013). Philadelphia Votes to Ban 3-D
Printed Guns. Retrieved from http://www.nbcphiladelphia.
com/news/local/Philadelphia-Votes-to-Ban-3D-Printed-
Guns-232941351.html accessed on 5 December 2013.
[31]. Warszawski, A., & Navon, R. (1998). Implementation
of robotics in building: Current status and future prospects.
Journal of Construction Engineering and Management,
124(1), 31-41.
[32]. Zeit, (2013). Software soll das Drucken von Waffen
verhindern. Retrieved from http://www.zeit.de/digital
/internet/2013-07/waffen-3d-drucker-filter-software/seite-2
[33]. Zhang, J., & Khoshnevis, B. (2013). Optimal machine
operation planning for construction by Contour Crafting.
Automation in Construction, 29, 50-67.