JMAT_V5_N4_RP1
Common Coupled Fixed Point Theorems in Fuzzy Metric Spaces
T. Rakesh Singh
P. Srikanth Rao
Journal on Mathematics
2277-5137
5
4
1
10
Fuzzy Metric Space, Common Fixed Points, Weakly Compatible Maps, Coupled Fixed Point
A fuzzy set of X is a function with domain X and values in [0, 1]. If A is a fuzzy set and x ? X, then the function values A(x) are called the grade of membership of x in A. A mapping F from X to F(Y) is called a fuzzy mapping if for each x ? X; F(x) is a fuzzy set on Y and F(x)(y) denotes the degree of membership of y in F(x). Let X be a metric linear space and let W(X) denote the set of all fuzzy sets on X such that each of its α-cut is a nonempty compact and convex subset (approximate quantity) of X. A fuzzy mapping F from X to W(X) is called a fuzzy contraction mapping if there exists q ? (0, 1) such that D(F(x), F(y)) ≤ qd(x, y) for each x,y ? X. In this paper, two common coupled fixed point theorems for six self maps is proved under Wcompatible conditions in fuzzy metric spaces. Coupled fixed point and coupled point of coincidence for contractive mappings in complete fuzzy metric space is also obtained. The results obtain an extension of Theorem 2.1 by K. Pandu Ranga Rao, K. Rama Koteswara Rao, and S. Sedghi, (2014) [11]. Common Coupled Fixed Point Theorems in Fuzzy Metric Spaces. Finally, an example has been given to illustrate the usability of the main result.
October - December 2016
Copyright © 2016 i-manager publications. All rights reserved.
i-manager Publications
http://www.imanagerpublications.com/Article.aspx?ArticleId=8305