
A SURVEY ON OPERATING SYSTEM VIRTUALIZATION
METHODS AND CHALLENGES

* Assistant Professor, Department of Computer Science and Engineering, JSS Academy of Technical Education (VTU), Bangalore, India.
** Professor, Department of Information Science and Engineering, JSS Academy of Technical Education (VTU), Bangalore, India.

ABSTRACT

Computational world is turning out to be substantial and complex. Distributed computing has risen as a well registering

model to bolster handling substantial volumetric information utilizing groups of product PCs. Working framework (OS)

virtualization can give various imperative advantages, including straightforward relocation of utilizations, server

combination, online OS upkeep, and improved framework security. Nonetheless, the development of such a framework

introduces a bunch of difficulties, not withstanding for the most wary engineer, that if neglected may bring about a frail,

deficient virtualization. We exhibit exchange of key execution issues in giving OS virtualization in a merchandise OS,

including framework call intervention, virtualization state administration, and race conditions. The authors discussed

about their encounters in executing such usefulness over two note worthy variants of Linux altogether in a loadable bit

module with no portion adjustment. The author exhibit trial results on both uniprocessor and multiprocessor frameworks

that show the capacity of our way to deal with furnish recapture virtualization with low overhead. In this paper, the authors

first developed a comprehensive taxonomy for describing operating system architecture. Then they use this taxonomy to

survey several existing operating system virtualization services and challenges.

Keywords: Operating System, Virtualization, Uniprocess, Multi Process.

ABHILASH C.B * D.V. ASHOKA **

By

INTRODUCTION

PCs have ended up pervasive in scholarly, corporate, and

government associations as exponential scaling laws

have made PCs speedier, less expensive, and

progressively joined. In the meantime, the broad

utilization of PCs has offered ascent to tremendous

administration many-sided quality and security dangers.

Virtualization has risen as a key innovation for tending to

these issues.

Virtualization basically acquaints a level of indirection with

a framework to decouple applications from the

fundamental host framework. This decoupling can be

utilized to give critical properties, for example, separation

and versatility, giving a heap of helpful advantages. These

advantages incorporate sup-isolating so as to pore server

union applications from each other while having the

same machine, enhanced system security by

disconnecting defenseless applications from other

mission basic applications migrating so as to run on the

same machine, issue flexibility applications of flawed

hosts, element burden migrating. To adjust applications to

less stacked has and enhanced administration

accessibility and organization by relocating applications

before host up keep, so they can keep on running with

negligible downtime.

While virtualization can be performed at various diverse

levels of reflection, giving virtualization at the right level to

straight forwardly bolster unmodified applications is

significant to empower arrangement and boundless

utilization. The two primary methodologies for giving

application straight forward virtualization are; equipment

virtualization and working framework virtualization.

Equipment virtualization methods virtualize the under-

lying equipment construction modeling utilizing a virtual

machine screen to decouple OS from the equipment so

that, a whole OS environment and related applications

can be executed in a virtualized domain. OS virtualization

strategies virtualize the OS to decouple applications from

the OS, so that individual applications can be executed in

virtualized situations. Equipment and OS virtualization

RESEARCH PAPERS

28 li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

systems give their advantages and can give correlative

usefulness.

OS virtualization gives another granularity of control at the

level of individual procedures or applications, which is

more useful than the equipment virtualization reflection

that works with whole OS occurrences. For instance, OS

virtualization can empower straight forward movement of

individual applications, not only relocation of whole OS

occasions. This granularity relocation gives more

noteworthy adaptability and results in lower overhead.

Moreover, if the working framework obliges up keep, OS

virtualization can be utilized to relocate the discriminating

applications to another running working framework

occurrence. By decoupling applications from the OS

occurrence, OS virtualization empowers the basic OS to

be fixed and overhauled in an auspicious way with

insignificant effect on the accessibility of utilization

administrations. Equipment virtualization alone can't give

this usefulness, since it binds applications to an OS

occurrence, and ware working frameworks unavoidably

bring about down-time because of essential upkeep and

security upgrades.

Given the advantages of OS virtualization, contemporary

OSs are progressively intrigued by giving backing to it [1].

While a hefty portion of the ideas driving OS virtualization

have been talked about in subtle element in past work,

little consideration has been given to seeing how to really

execute it practically speaking. Most work has

concentrated on more elevated amount issues without

respect for a hefty portion of the unpretentious issues and

execution challenges in making OS virtualization work

accurately for unmodified applications and thing OSs.

While some work has concentrated on more elevated

amount usage contemplations with respect to security in

OS virtualization [2], we are not mindful of any past work

that considers execution issues in giving more finish OS

virtualization, for example, in the setting of straightforward

application relocation.

The authors introduce a point by point discourse of key

execution issues and difficulties in giving OS virtualization

in a merchandise OS. We think about choices for

executing OS virtualization at client level versus portion

level, talk about execution costs for routines for putting

away virtualization state, and analyze unobtrusive race

conditions that can emerge in actualizing OS

virtualization. Some OSs are progressively making so as to

fuse virtualization support pervasive changes to the OS

piece [3]. The authors depict a methodology of

actualizing OS virtualization in an insignificantly obtrusive

way by regarding the OS bit as an unmodified black box.

The encounters from this methodology are instrumental in

showing how OS virtualization can be consolidated into

product OSs with negligible changes. Utilizing this

methodology, we have actualized a Linux OS virtualization

model totally in a loadable piece module. The authors

show quantitative results exhibiting that such a negligibly

obtrusive methodology should be possible with low

overhead.

1. Virtualization Concepts

OS virtualization disconnects forms inside of a virtual

execution environment by checking their association with

the basic OS example. Like equipment virtualization [4],

applications that keep running inside of the virtual

environment ought to show an impact indistinguishable to

that exhibited as though they had been keep running on

the unvirtualized framework. Furthermore, a factually

prevailing subset of the applications association with

framework assets ought to be immediate to minimize

overhead.

OS virtualization approaches are grouped along two

measurements, host-autonomy and fulfillment. Host-

subordinate virtualization just confines forms while host-

free virtualization additionally decouples them. The

qualification is that, host-subordinate virtualization just

squares or lifters out the namespace between

procedures, while host-free virtualization gives a private

virtual namespace to the applications' referenced OS

assets. The previous does not bolster straightforward

application relocation since the absence of asset

interpretation tables orders that the asset identifiers of an

application stay static crosswise over hosts for a mi-

grinding procedure, which can prompt identifier clashes

when moving between hosts. Samples of host-ward

RESEARCH PAPERS

29li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

virtualization incorporate Linux VServers and Solaris Zones

[5]. Host-free virtualization exemplifies forms in a private

namespace that deciphers asset identifiers from any host

to the private identifiers expected by the moving

application. Illustrations of this methodology incorporate

Zap [6] and Capsules [7]. The authors allude to these

virtual private names-pace as a case, taking into account

the wording utilized as a part of Zap.

As far as fulfillment, incomplete virtualization virtualizes just

a subset of OS assets. The most widely recognized sample

of this is virtual memory, which furnishes every procedure

with its own particular private memory namespace yet

doesn't virtualize some other OS assets. Table 1 shows the

Kernel Subsystems.

Inside of this scientific categorization of virtualization

methodologies, finish and host-free virtualization gives the

broadest scope of usefulness, which incorporates giving

the important backing to both separation and relocation

of utilizations. An extra qualification between the scientific

categorizations is in the application's extent regarding the

accessible frameworks. Virtualization approaches that

are host-subordinate and/or halfway give advantages just

on a solitary host, while complete, host-autonomous

virtualization approaches master vide the backing for

applications to abuse the accessible frameworks that are

available to the whole association. The rest of this paper

concentrates on the requests of supporting this more

broad type of virtualization in the setting of product OSs.

2. Virtualization Methods

To bolster private virtual namespaces, instruments must

be given to decipher between the case's asset identifiers

and the working framework asset identifiers. For each

asset got to by a procedure in a case, the virtualization

layer partners a virtual name to a proper OS physical

name. At the point when an OS asset is made for a

procedure in a unit, the physical name returned by the

framework is discovered, and a relating private virtual

name is made and re-swung to the procedure. Likewise,

at whatever time a procedure passes a virtual name to

the working framework, the virtualization layer gets and

replaces it with the relating physical name. To empower

this interpretation, an instrument must be utilized that

diverts the typical control stream of the framework so that,

the private virtual namespaces are utilized as opposed to

the default physical namespace.

Intervention is the key system that can give the imperative

redirection expected to virtualization of namespaces. In

our setting, mediation catches occasions between face

in the middle of uses and the OS and performs some

handling on those occasions before passing them down

to the OS or up to the applications. The intervention that

should be defeated actualizing OS virtualization obliges

that some preprocessing be done before the local piece

usefulness is executed, and some post-preparing be

done after the local part usefulness is executed. The

mediation usage itself is expert by wrapping the current

framework calls with the capacities and deciphering

between virtual names and physical names prior and

then afterward the first framework call is summoned.

Framework call mediation can be actualized at

RESEARCH PAPERS

Table 1. Kernel Subsystems and Related Resources

Subsystem Description

Process ID PID and related IDs: thread group, process
group, session

Filesystem Filesystem root (chroot)

SysV IPC ID and KEY of message queues, semaphores,
and shared memory

Unix IPC Unix domain sockets, pipes, named pipes

Network Internet domain sockets

Devices Device specific resources

Pseudo terminals PTS IDs and devpts pseudo lesystem

Pseudo systems E.g. procfs, devpts, shmfs

Miscellaneous Hostname, user/group ID, system name

Table 2. Virtualization Methods

Method Description

System
table

-wide hash Convert physical host identifiers to virtual pod
identifiers

Per-pod hash table Convert virtual pod identifiers to physical host
identifiers

Direct reference Per -process fast reference to augmented
virtualization state

PID reference count Protect PIDs of processes that insides or outside pods
from reuse

in-pod process Indicate that a process is running inside a pod

init-pending process Indicate that a process in a pod is pending
initialization

Outside-pod table Track identifiers used by processes running outside
pods

Restricted-ID table Track identifiers without a reference count that are in
use

init
process

-complete Indicate that the virtualization state of a resource has
been initialized

Filesystem stacking Virtualize per-pod pseudo view

30 li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

distinctive layers of the framework. We support utilizing the

loadable portion module innovation that is presently

accessible with all significant ware OSs. A part module

can give application-straightforward virtualization without

base bit changes and without giving up versatility and

execution. Moreover, by working in advantaged mode,

virtualization can give the security important to guarantee

right confinement. By working at the level of piece

modules, the virtualization module can use the

arrangement of sent out portion subroutines, which is a

very much characterized interface. Utilizing the bit API

likewise means a sure level of convenience and

soundness in the execution, since changes in the piece

API are rare.

At the end of the day, virtualization versatility is shielded to

an expansive degree from part changes in a

comparative manner as legacy applications are

ensured.

There are different ways to deal with actualizing

framework call intervention. One methodology is to

actualize intervention as a client level library [8] such that

mediation code is executed in the process' setting

executing the system call. This is generally simple to

execute, possibly yields more convenient code, and uses

the unmistakable limit between client level and bit level.

Sadly, it doesn't give viable confinement of utilizations and

can be effectively subverted whenever. It rather requires

their collaboration and does not work for statically-

connected libraries or specifically executed framework

calls.

Another methodology is to utilize a part process following

office, for example, ptrace [9], which permits a client level

procedure to screen another procedure [10]. By utilizing

accessible part usefulness, this procedure following

methodology can uphold an OS virtualization

deliberation more successfully than entirely client level

methodologies. In any case, ptrace has numerous

restrictions regarding execution and security [11], and the

semantics of ptrace are profoundly framework particular,

which brings about a non-versatile strategy.

A third approach is to change the bit specifically to

actualize mediation. This offers most extreme edibility,

with the least mediation overhead. Be that as it may, has

the written work code straightforwardly in the bit is more

convoluted and awkward than in client level, harder to

investigate, and the outcome is well on the way to be non-

compact. Binds the usage to the piece internals obliges

following, in detail, all resulting portion overhauls.

Moreover, forcing a part fix, re-accumulation and reboot

procedure is a genuine down to earth hindrance to

organization and usability.

Given the constraints of different methodologies, the

auhors have actualized OS virtualization as a loadable bit

module that works with major Linux piece adaptations,

including both Linux 2.4 and 2.6 bits. The usage keeps

away from changes to the working framework part, and

means to manufacture entirely on its traded interface

however much as could reasonably be expected. It

supports the case reflection additionally permits different

procedures to keep running outside the virtualized

situations to straightforwardness sending on frameworks

which require such legacy usefulness.

3. Virtualization Challenges

Given this part module, mediation construction

modeling, the authors now examine key execution

challenges in supporting virtualized framework calls.

Virtualization obliges that some state be kept up by the

virtualization module. The fundamental express that

should be kept up is the unit's asset names, the basic

framework physical asset names, and the mapping in the

middle of virtual and physical names. Throughout this

discourse, they accentuate that execution is an essential

concern and a large portion of the methodologies that

are designed to accomplish low execution overhead.

Table 2 gives a techniques' outline and information

structures used to keep up virtualization state effectively.

A RST rough guess methodology utilizes two sorts of hash

tables that can be immediately listed to perform the vital

interpretation. One is a framework wide hash table listed

by physical identifiers on the host OS, that profits the

comparing unit and virtual identifier. The other is a for

every unit hash table listed by virtual identifiers particular to

RESEARCH PAPERS

31li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

a case that profits the relating physical identifiers. A

different pair of hash tables would be utilized for every OS

asset that should be virtualized, including PIDs, SysV IPC,

and pseudo terminals. For multiprocessor and multi-

strung frameworks, legitimate hash table upkeep obliges

locking instruments to guarantee state consistency. Taking

care of these locks to dodge gridlock and to lower

execution over-head is a non-unimportant matter.

The utilization of these hash tables alone can bring about

imperfect execution. While hash tables give consistent

time lookup operation, there is a non-immaterial

execution over-head because of included lock dispute,

additional calculation needed to do the lookup, and

some subsequent reserve contamination.

Specifically, the framework wide hash table is utilized for

every asset access to focus the unit connected with the

running procedure. The incessant utilization of this hash

table can bring about lock dispute and weaken

adaptability.

To minimize the expense of deciphering between case

name spaces and the basic working framework

namespace, the authors connect with every local

procedure information structure an immediate reference

to the procedure's expanded virtualization state and the

procedure's case. These immediate references go about

as a reserve advancement that wipes out the need to

utilize the table to get to the virtualization information of a

procedure, decreasing the hash table lookup rate.

While this immediate affiliation just obliges two references,

it is improbable that, the local portion process information

structure has two unused references which can be utilized

for this reason. Rather, a successful arrangement is to

develop the zone possessed on the procedure's part

stack by two pointers that reference the significant

information structures. In this way, once a piece process

information structure is gotten, there is no compelling

reason to allude back to any hash tables to make an

interpretation of from physical to virtual identifiers. Since

this operation is so basic, this decreases the virtualization

overhead of the framework over an expansive scope of

virtualized framework calls and wipes out a noteworthy

potential hotspot for lock conflict as shown in Figure 1.

Conclusion

While OS virtualization ideas have been already talked

about, the past work does not address vital execution

issues in supporting OS virtualization in the connection of

merchandise OSs. To the best of insight, the authors’ work

investigate these usage issues inside and out for the rst

time. The authors discussed about talk about the

requirement for framework call intervention for actualizing

OS virtualization and analyze different methodologies for

giving this usefulness. They exhibit the advantages of a

loadable portion module usage and demonstrate that

the overhead of this methodology is considerably not

exactly different methodologies, for example, utilizing

procedure following usefulness. Also they discussed

about how OS virtualization state ought to be put away

and depict a few critical enhancements for guaranteeing

low execution overhead.

Acknowledgment

References

[1]. S. Bhattiprolu, E. W. Biederman, S. Hallyn, and D.

Lezcano. (2008). “Virtual Servers and Checkpoint/Restart

in Mainstream Linux”. SIGOPS Operating Systems Review,

Vol. 42, No. 5.

[2]. T. Garnkel, (2003). “Traps and Pitfalls: Practical

Problems in System Call Interposition Based Security Tools”.

In Proceedings of the Network and Distributed Systems

Security Symposium, San Diego, CA.

[3]. PID Namespaces in the 2.6.24 Kernel. Retrieved from

The authors would like to thank JSS Mahavidyapeetha,

Mysore & JSS Academy of Technical Education,

Bangalore, India for their continuous support.

RESEARCH PAPERS

Syscall(….)

premble

Kernel invocation

epilogue

………

Figure 1. Virtualization Wrapper

32 li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

http://lwn.net/ Articles/259217/.

[4]. G.J. Popek and R.P. Goldberg. (1974). “Formal

Requirements for Virtualizable Third Generation

Architectures”. Commun. ACM, Vol. 17, No. 7, pp. 412-

421.

[5]. How to Break Out of a Chroot Jail. retrieved from

h t tp : / /www.bp fh.ne t / s imes /comput i ng /ch roo t -

break.html.

[6]. O. Laadan and J. Nieh, (2007). “Transparent

Checkpoint-Restart of Multiple Processes on Commodity

Operating Systems”. In Proceedings of the 2007 USENIX

Annual Technical Conference, Santa Clara, CA, June

2007.

[7]. B.K. Schmidt, (2000). “Supporting Ubiquitous

Computing with Stateless Consoles and Computation

Caches”. Ph.D thesis, CS Department, Stanford University.

[8]. M. Jones, (1993). “Interposition Agents: Transparently

Interposing User Code at the System Interface”. In

Proceedings of the 14th ACM Symposium on Operating

Systems Principles (SOSP), Asheville, NC.

[9]. M. McKusick, K. Bostic, M.J. Karels, and J.S., (1996).

The Design and Implementation of the 4.4BSD Operating

System. Addison-Wesley,

[10]. D. Wagner. (1999). “Janus: An Approach for Con

nement of Untrusted Applications”. Master's thesis,

University of California, Berkeley, Aug.

[11]. A. Whitaker, M. Shaw, and S. D. Gribble. (2002).

“Scale and Performance in the Denali Isolation Kernel”. In

Proceedings of the 5th Symposium on Operating Systems

Design and Implementation (OSDI), Boston, MA.

RESEARCH PAPERS

33li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

ABOUT THE AUTHORS

Abhilash C B is presently working as an Assistant Professor in the Department of Computer Science and Engineering at JSS
Academy of Technology, Bangalore, India. He got his M.Tech in Software Engineering from VTU, Belgaum, India and B.E. in
Computer Science and Engineering from VTU, Belgaum, India. He has a Professional Membership with MISTE and MIAENG. His
research interests are in Operating System Virtualization and Data Mining.

Dr. D.V. Ashoka is presently working as a Professor in the Department of Information Science and Engineering at JSS Academy of
Technology, Bangalore, India. He got his PhD in Computer Science and Engineering from Dr. MGR University, Chennai, India,
M.Tech in Computer Science and Engineering from VTU, Belgaum, India and B.E. in Computer Science and Engineering from
Kuvempu University, India. He is an approved research guide for many Indian universities and has over 20 years of experience in
Teaching, Research and Administration. He has professional membership with FELLOW IEI, IEEE, MISTE, MCSI and MIAENG. He is
one of the National Award winners "Rashtriya Ekta Samman-2013". His research interests are in Operating System Virtualization,
Knowledge Engineering, Communication, Network Security and Data Mining.

	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38

