
RESEARCH PAPERS

A SUBSTITUTION BASED ENCODING SCHEME TO MITIGATE
CROSS SITE SCRIPT VULNERABILITIES

Assistant Professor, Department of Computer Science Engineering, Ambedkar Institute of Advanced Communication Technology and
Research (AIACT&R), Delhi, India.

** Chairman and Professor, YMCA University of Science and Technology, Faridabad, Haryana, India.
*** Associate Professor, Department of Computer Science Engineering, Ambedkar Institute of Advanced Communication Technology and

Research (AIACT&R), Delhi, India.

ABSTRACT

Most of the attacks made on the web, target the vulnerability of web applications. These vulnerabilities are researched

and analyzed at OWASP [1]. The Open Web Application Security project, OWASP, tracks the most common failures. Cross

Site Scripting (XSS) is one of the worst vulnerabilities that allow malicious attacks such as cookie thefts and web page

defacements. Testing an implementation against XSS vulnerabilities can avoid these consequences. Obtaining an

adequate test data set is essential for testing of XSS vulnerabilities. These inputs are interpreted by browsers while

rendering web pages. When an attacker gets a user's browser to execute his/her code, the code will run within the

security context (or zone) of the hosting website. With this level of privilege, the code has the ability to read, modify and

transmit any sensitive data accessible by the browser. Cross-site scripting attacks essentially compromise the trust

relationship between a user and the website. XSS occurs when a web page displays user input typically via JavaScript that

is not properly validated. This paper uses an encoding scheme that scans the starting tag present in a HTML tag and

encodes it such that, the script written inside the starting and closing tags will not work as a HTML element thus, rendering

the attack useless.

Keywords: XSS Attack, Vulnerability, XSS Types, Prevention.

BHARTI NAGPAL * NARESH CHAUHAN ** NANHAY SINGH ***

By

INTRODUCTION

Cross-site Scripting (XSS) is a technique that is used by the

attacker to supply code into a user's browser instance. The

code itself is usually written in HTML/JavaScript, but may

also extend to VBScript, ActiveX, Java, Flash, or any other

browser-supported technology. A Cross-site scripted user

could have his/her account hijacked (cookie theft), their

browser redirected to another location, or possibly shown

fraudulent content delivered by the website they are

visiting. As a result, the intended behavior of generated

web pages alters through visible (e.g., creation of pop-up

windows) and invisible (e.g., cookie bypassing)

symptoms. Applications utilizing browser object instances

which load content from the file system may execute

code under the local machine zone allowing for system

compromise. Cross-site Scripting allows a hacker to insert

malicious JavaScript, VBScript, ActiveX, HTML, or Flash into

a dynamic web page which is vulnerable. The purpose of

executing the script is to collect confidential data. The

hacker gathers private information as well as manipulates

or steal cookies.

1. Types of XSS

There are three types of XSS attacks which are mentioned

below:

·Non-persistent

·Persistent

·DOM-based

1.1 Non-persistent

Non-persistent attacks, probably the most common type

of cross-site scripting exploit is the reflected exploit. It

targets vulnerabilities that occur in some websites when

data submitted by the client is immediately processed by

the server to generate results that are sent back to the

12 li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

browser on the client system. An exploit is successful if it

can send code to the server that is included in the web

page results sent back to the browser, and when those

results are sent, the code is not encoded using HTML

special character encoding thus being interpreted by the

browser rather than being displayed as inert visible.

1.2 Persistent

Persistent attacks occur when the malicious code is

submitted to a website where it is stored for a period of

time. Examples of an attacker's favorite target often

include message board posts, web mail messages, and

web chat software. The unsuspecting user is not required

to interact with any additional site/link (e.g. an attacker site

or a malicious link sent via email), just simply view the web

page containing the code.

1.3 DOM-based

DOM-based attacks require a user to either visit a specially

crafted link laced with malicious code, or visit a malicious

web page containing a web form, which when posted to

the vulnerable site, will mount the attack. It is a special

variant of reflected XSS, where logic errors in legitimate

JavaScript and careless usage of client-side data result in

XSS conditions. Using a malicious form will oftentimes take

place when the vulnerable resource only accepts HTTP

POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by

using JavaScript). Upon clicking on the malicious link or

submitting the malicious form, the XSS payload will get

echoed back and will get interpreted by the user's browser

and execute. Another technique to send almost arbitrary

requests (GET and POST) is by using an embedded client,

such as Adobe Flash.

2. Vulnerabilities

Cross Site Scripting can be used to Steal cookies, which is

also known as cookie hijacking, redirecting the users to

different websites, displaying completely different

content on your website, performing port scans of the

customer's internal network which may lead to full intrusion

attempt, denting the reputation and goodwill of the

organization, can lead to huge penalty amount which

can affect the continuity of the business and of course

steal sensitive user data. Cross-Site Scripting stems from

the notion that, a malicious website has the ability to load

another website into another frame or window. This is

accomplished by JavaScript which is used to read or write

data on the other website.

For example:

·The following query when injected in the login form of

the website, the results will be recorded as follows-

<ScRipt>ALeRt("XSS");</sCRipT>

This technique is also called Obfuscation. It is used when

there is no proper filter for filtering different use case letters

in the script. The starting and closing tags are converted to

< and > respectively making them unusable as HTML

tags and gives the following output:

<ScRipt>ALeRt("XSS");</sCRipT>

·The following query when injected in the login form of

the website and the results will be recorded.

<script></script>

Image XSS using the JavaScript directive is also used as an

XSS attack. The starting and closing tags are converted to

< and > respectively making them unusable as HTML

tags and gives the following output:

<script></script>

3. Related Work

There has been a plenty of research going on in order to

detect and prevent cross site scripting attacks. Following

are some detection and prevention mechanism

proposed by the researchers.

3.1 “XSS Vulnerability Detection Using Model Inference

Assisted Evolutionary Fuzzing” (Fabien Duchene, Roland

Groz, Sanjay Rawat, and Jean-Luc Richier) (2012)

[2] In this paper, they have proposed an approach to

detect web injection vulnerabilities by generating test

input using a combination of model inference and

evolutionary fuzzing. Model inference is used to obtain a

knowledge about the application behavior. Here inputs

are generated using GA (Genetic Algorithm). GA uses the

learned formal model to automatically generate input

with better fitness values towards triggering an instance of

the given vulnerability. They have proposed an

RESEARCH PAPERS

13li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

automated type-1 XSS search technique which is based

on model inference and evolutionary fuzzing to generate

test cases.

3.2 “Model Checking for the Defense against Cross-site

Scripting Attacks” (Yu Sun, and Dake He) (2012)

[3] In this paper, they have proposed a model checking

method for the defense against Cross-site Scripting

attacks. Bugs of the e-commercial website are found and

counter examples are shown by model checking. The

automatic modeling algorithm for the HTML code is

proposed and the case of the performance of the

algorithm is presented.

3.3 “Mining Input Sanitization Patterns for Predicting SQL

Injection and Cross Site Scripting Vulnerabilities” (Lwin

Khin Shar and Hee Beng Kuan Tan) (2012)

[4] In this paper, they have proposed various input

sanitization methods and proposed a set of static code

attributes. They have used data mining method to predict

SQL injection and cross site scripting vulnerabilities in web

applications. Here the classification schemes are based

on CFG (Control Flow Graph) of a web application

program. They implemented a proof-of-concept tool

called PhpMiner. It is used to extract the data and

attributes from PHP programs.

3.4 “Defending against Cross-Site Scripting Attacks”

(Lwin Khin Shar and Hee Beng Kuan Tan) (2012)

[5] The authors have proposed various XSS exploit

techniques that are similar to SQL injection, an original

form of code injection. This type of attack exploits an

application's output function that references poorly

sanitized user input. They have also proposed various

types of XSS Defense Techniques like (defensive coding

practices, XSS testing, vulnerability detection, and runtime

attack prevention.

3.5 “A Cross Platform Intrusion Detection System using

Inter Server Communication Technique” (Ms. R.

Priyadarshini, D. Jagadiswaree, A. Fareedha, and M.

Janarthanan) (2011)

[6] In this paper an IDS sever has been developed which

analyse and detect the input interaction from the web

application via an API (Application Programming

Interface) using Curl library and identifies whether the

intrusion occurred or not and prevents it from attacking

the web application. Web application tested in this paper

is message application developed in the programming

language like .NET, PHP, JSP etc. and sends its input file to

IDS Server via inter server communication mechanism

and thereby detects and prevents the intrusion. In

addition to this, a log file is generated over which the

behavioural pattern is analysed and plotted to generate

the report dynamically.

3.6 “Security Testing of Web Applications: A Search

Based Approach for Cross-Site Scripting vulnerabilities”

(Andrea Avancini and Mariano Ceccato) (2011)

[7] In this paper, they proposed a search based approach

for security testing of web applications. They took

advantage of static analysis to detect candidate cross-

site scripting vulnerabilities. Input values that expose these

vulnerabilities are searched by a genetic algorithm and,

to help the genetic algorithm escape local optima,

symbolic constraints are collected at run-time and

passed to a solver. Search results represent test cases to

be used by software developers to understand and fix

security problems. They implemented this approach in a

prototype and evaluated it on a real world PHP code.

3.7 “Protecting Cookies from Cross Site Script Attacks

Using Dynamic Cookies Rewriting Technique” (Rattipong

Putthacharoen and Pratheep Bunyatnoparat) (2011)

[8] This approach aims to change the cookies in such a

way that, they will become useless for XSS attacks. This

technique is called “Dynamic Cookie Rewriting”

implemented in a web proxy where, it will automatically

replace the cookies with the randomized value before

sending the cookie to the browser. In this way, the browser

will keep the randomized value instead of original value

that is sent by the web browser. At the web server end, the

return cookie from the browser again is rewritten to its

original form at the web proxy before being forwarded to

the web server. So in case if XSS attacks steal the cookies

from the browser's database, the cookies cannot be used

by the attacker to impersonate the users. This technique is

not tested with HTTPs connections.

RESEARCH PAPERS

14 li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

4. Proposed Solution

In this paper, the authors proposed a substitution based

encoding scheme to mitigate cross site scripting attack.

The effectiveness of the proposed method is tested and

validated to mitigate XSS attack. The proposed solution is

explained below.

4.1 Flowchart

The prevention of XSS attack can be explained with the

help of flowchart as mentioned below in Figure1.

The attack starts when a user injects the string in the text

box. This input is scanned for special characters (like

<,>,&,'and “). If a character is found, then it is encoded

and if not the string is stored in the database and the

specified string is executed on the website.

4.2 Algorithm

The proposed algorithm to prevent XSS attack is shown in

Figure 2.

If a web page is vulnerable to XSS attack, the attacker can

inject his code in the comment area. If there is any HTML

tag present in the string, then the browser will render it as

HTML tags and the script tag is executed. By using this

algorithm, whenever the user enters some text and press

submit, the text is then analyzed character by character

and if there exist any HTML tag, then it is encoded like '<' is

encoded to '<' '>' is encoded to '>' and so on. The

string entered by the user is the input. Every character of

input string is checked whether it is a HTML tag or not, if it is

so, then the character is replaced by its corresponding

encoded tag and if it is not a HTML tag the character is

placed as it is. The new created string i.e. encoded String is

sent to the database.

5. Implementation

 If a web page is vulnerable to XSS attack, the attacker can

inject his code in a search bar or at the url. When checking

for vulnerability, the attacker injects the search bar or url

with a script tag.

For example :

<script>alert (“Check for Vulnerability”);</script>

If the browser responds with a pop-up with the message

inside the alert, this means that the web page is vulnerable

to XSS attack and the attacker may use different attacks

for stealing sensitive data accessible only to the admin of

RESEARCH PAPERS

Figure1. Flow Chart to Prevent XSS Attack

functionencode Input{

int i=0;

charencodedInput [500];

while(input[i]!=’/0’){

if(input[i]==’<’)

Concatenate encodedInput with ‘<’;

Else if(input[i]==’>’)

Concatenate encodedInput with ‘>’;

Else if(input[i]==’&’)

Concatenate encodedInput with ‘&’;

Else if(input[i]==’ ” ’)

Concatenate encodedInput with ‘"’;

Else if(input[i]==’ ‘ ’)

Concatenate encodedInput with ‘&apos’;

Else

Concatenate encodedInput with input[i];

}

returnencodedInput ;

}

Figure 2. Algorithm to Prevent XSS Attack

15li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

the web page. These attacks can be prevented using the

encoding scheme which will change the meaning of the

injected script by the attacker. If there is any HTML tag

present in the string, then the browser will render it as HTML

tag and the script tag is executed.

For example :

Consider the following text,

<i>Computer

The above text will be printed in italics.

Now if we substitute the starting tag '<' and closing tag '>'

with a replacement < and > respectively, the script

inside the tags will be rendered useless.

For example, if an attacker injects his code in the login

form of the website like:

<script>alert (“Check for Vulnerability”);</script>

The browser will read the above query as:

 <script& gtalert (“Check for Vulnerability”);</script>

And hence the output would be:

<script>alert (“Check for Vulnerability”);</script>

6. Experimental Analysis

Table 1 shows the experimental analysis of various XSS

queries.

Table 2 shows the experimental analysis of various XSS

queries on different websites:

Conclusion

A variety of programming practice guidelines and web

application security testing tools and scanners have been

proposed by the research community to detect and

prevent XSS attack. Inspite of implementing the known

preventive techniques, attackers are still able to

successfully perform XSS attack on web applications and

get access to the confidential user information.

The proposed approach prevents the attacker from

attacking vulnerable websites by encoding the incoming

input given by the user. The efficiency of the proposed

method is successfully tested on different websites and

validated to prevent XSS attack.

References

[1]. The Open Web Application Security Project, "OWASP

TOP 10 Project", Retrieved from http://www.owasp.org/

[2]. Fabien Duchene, Roland Groz, Sanjay Rawat, and

Jean-Luc Richier, (2012). “XSS Vulnerability Detection

Using Model Inference Assisted Evolutionary Fuzzing”. IEEE

Fifth International Conference on Software Testing,

Verification and Validation.

[3]. Yu Sun and Dake He, (2012). “Model Checking for the

Defense against Cross-s i te Scr ipt ing Attacks”.

International Conference on Computer Science and

Service System.

[4]. Lwin Khin Shar and Hee Beng Kuan Tan, (2012).

“Mining Input Sanitization Patterns for Predicting SQL

Injection and Cross Site Scripting Vulnerabilities”. IEEE.

[5]. Lwin Khin Shar and Hee Beng Kuan Tan, (2012).

“Defending against Cross-Site Scripting Attacks”. IEEE.

[6]. R. Priyadarshini, D. Jagadiswaree, A. Fareedha, and

M. Janarthanan, (2011). “A Cross Platform Intrusion

Detection System using Inter Server Communication

Technique”. International Conference on Recent Trends

in Information Technology, IEEE.

[7]. Andrea Avancini and Mariano Ceccato, (2011).

“Security Testing of Web Applications: A Search Based

Approach for Cross-Site Scripting vulnerabilities”. IEEE.

RESEARCH PAPERS

Table1. Experimental Analysis of XSS Queries

Query Detected Prevented

<script>alert(“XSS”);</script> Yes Yes

<script>String. from Char Code (97, 108, 101,
114, 116, 40, 34, 88, 83, 83, 34,
41)</script>

Yes Yes

<script><IMG
SRC="javascript:alert('XSS);"></script>

Yes Yes

<ScRipt>ALeRt("XSS");</sCRipT> Yes Yes

<ScRipt>ALeRt("XSS");</sCRipT> Yes Yes

Table 2. Experimental Analysis of XSS
Queries on Different Websites

Moneycontrol.com <script>alert(/Moneycontrol.com
is Vulnerable/);</script>

Site was
vulnerable

Deephousepage.
com

<script>String.fromCharCode
(97, 108, 101, 114, 116, 40, 34,
88, 83, 83, 34, 41)</script>

Site was
vulnerable

Dogspot.in <script><IMG
SRC="javascript:alert('Dogspot.in
is Vulnerable');"></script>

Site was
vulnerable

Bankgorodov.ru <script><iframe/onload=alert
(/XSS/)</script>

Site was
vulnerable

Sidereel.com <script>alert(“XSS”);</script> Site was
vulnerable

16 li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

[8] . Rat t ipong Put thacharoen and Pratheep

Bunyatnoparat, (2011). “Protecting Cookies from Cross

Site Script Attacks Using Dynamic Cookies Rewriting

Technique”. ICACT.

RESEARCH PAPERS

ABOUT THE AUTHORS

Bharti Nagpal is currently working as an Assistant Professor in the Department of Computer Science Engineering at Ambedkar Institute of Advanced
Communication Technology & Research, Delhi, India. She obtained her M.Tech in Information Systems from N.S.I.T Dwarka, Delhi in 2009 and
B.Tech in Computer Science Engineering from NIT Kurukshetra, in the year 1999. She has about 14 years of teaching experience. Her research
interest includes Web Technologies, Information Security, Web Mining, Data Mining and Data Warehousing.

Dr. Naresh Chauhan is currently the Chairman and Professor in the Department of Computer Science Engineering at YMCA University of Science
and Technology, Faridabad, Haryana, India. He received his Ph.D. in Computer Science Engineering from MD University, Rohtak (Haryana) in 2008,
M.Tech in Information Technology from GGS Indra Prastha University, Delhi in 2004 and B.Tech (Computer Science Engineering) from NIT
Kurukshetra, in the year 1992. He has about 22 years of experience in teaching and Industries. He served Bharat Electronics Ltd. and Motorola India
Ltd. His research interest includes Internet Technologies, Software Engineering, Software Testing and Real Time Systems. He has published one book
on Software Testing published from Oxford University Press, India (2010).

Dr. Nanhay Singh is currently working as an Associate Professor in the Department of Computer Science Engineering at Ambedkar Institute of
Advanced Communication Technology & Research, Delhi, India. He received his Ph.D in Computer Science Engineering from Kurukshetra
University, Kurukshetra (Haryana) in 2011, M.Tech in Computer Science Engineering from Kurukshetra University, Kurukshetra in 1998. He has about
16 years of teaching experience. He served as Assistant Professor in various prestigious institutes like HBTI, Kanpur (Uttar Pradesh) etc. His research
interest includes Web Mining, Web Security, Web Applications and Data Mining.

17li-manager’s , Vol. No. 1 lJournal on Information Technology 5 December 2015 – February 2016

	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

