
A REVIEW ON MODEL PREDICTIVE CONTROL TECHNOLOGY 
AND FUTURE ADVANCEMENTS

INTRODUCTION

The Model Predictive Control (MPC) technique determines 

the control effort in a receding horizon manner by 

minimizing the cost function by using an explicit model 

while satisfying the imposed constraints. The scheme was 

introduced by Richalet et al. [1], where the author has 

coined predictive control based on an impulse-response 

model by the name of a Model Predictive Heuristic Control 

(MPHC), which later became popular as Model Algorithmic 

Control (MAC). The model predictive controller repeatedly 

solves a linear programming problem while maintaining 

the optimal plant operation under the specified constraints 

on Controlled Variables (CVs), Manipulated Variables (MVs) 

and measured Disturbance Variables (DVs). The time-

domain constraints on signals can also be handled with the 

ease in MPC, the basic algorithm is easy to understand and 

implement. It uses quadratic programming methods for 

solving the quadratic cost function [2-4].

However, MPC is being used to control slow dynamics i.e., 

for calculation of set-point for low-level controllers which 

indirectly control the fast dynamics of the system. Rather, it 

has not directly replaced the classical methods, such as 

PID controller. The basic linear MPC formulation does not 

take into account, the inherent model uncertainties 

whether they are due to un-modelled dynamics, 

disturbances or nonlinearities. The advancements in the 

By

optimization algorithms, and with the betterment of fast 

computation techniques now, it is easier to implement the 

idea of MPC in the real-time applications.

MPC provides an unambiguous model of a system, the 

sequence of MVs which could be vigorously updated as 

soon as the new observations of the CVs are available. The 

optimization problem is solved at each sampling instant, to 

maintain the CVs, MVs and the plant or process trajectory 

under the limits of specified constraints. The first control 

action of the prediction horizon is applied to the 

plant/process. In the next sampling period, the time horizon 

shift to one sample forward and the same act is repeated 

by the controller.

The inputs to the process are calculated to optimize the 

future plant performance over a specified time horizon, 

which is called as the prediction horizon. Today, MPC is 

used in a multi-level hierarchy of control functions [1]. It 

becomes challenging to implement the suitable control 

actions in a multi-level process, where various constraints 

are to be kept under the limits. The control over the plant is 

achieved as a result of a constrained optimization problem 

over a time span, where the variables to be minimized are 

function of the inputs and the outputs of the system.

1. MPC Control Strategy

The basic control law that MPC uses is optimization, and 

quadratic cost is always a performance measure for it. 
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T TDefining positive definite matrices Q=Q >0 and R=T >0 

(the performance weights), we want to minimize the cost 

and performance measure in infinite horizon to find the 

optimal control input.

                            

(1)

The Linear Quadratic (LQ) controller provide solution to this 

problem in unconstrained case, while no solution exist 

when the problem is a constrained case problem. Let, the 

prediction horizon is N, now approximating the problem, 

with a finite horizon cost,

                        

(2)

With finite horizon, the problem can be solved but it will 

introduce a problem in the solution itself. Let the model be,

(3)

                                           (4)

With the current state x(k|k), the future state can be 

predicted, i.e., x(k+j|k), by using a future control sequence 

u (×|k). No state estimation is required so, x(k|k) = x (k), 

because we  assume C=I, which gives the prediction,

                       

(5)

The following optimization problem is defined using these 

predictions, 

                            (6)

Subject to,

(7)

 (8)

With this, the control algorithm steps are defined as follows:

1) Measure x(k|k)

2) Obtain u (×|k) by solving the above equation.

3) Apply u(k) = u (k|k)

4) Time update, k:=k+1

5) Repeat from step 1.

In the above optimization problem, the authors have 

minimized a quadratic objective which is subjected to the 

linear constraints. There are various efficient solution 

method to solve an optimization problem, and this may be 

a reason which made MPC so popular. The various 

methods are,

1. Active set method.

2. Pivoting algorithms.

3. Interior-point methods.

4. Reduced gradient algorithm.

2. Factors Influencing MPC

There are various factors that affect the MPC calculation, its 

dynamic behaviour and calculation strategy. The models 

used to represent the plant or process is also a very 

important factor in the MPC calculation. The correct model 

should be tuned with appropriate tuning parameters to 

obtain the MVs within the constraints.

2.1 Models of the Plant 

The heart of Model Predictive Control (MPC) is the process 

model itself. MPC requires the solutions of the model to 

predict the future process outputs, the form of the model 

selected has a large impact on the ability to implement 

MPC. Some specific categories of models used in MPC 

calculation are discussed. 

2.1.1 Linear or Non-linear Models 

The systems that produce the output in accordance to the 

principle of superposition are called linear dynamic 

systems. In all the control application, the linear design 

techniques are usually the first to be attempted and are 

completely satisfactory for many applications.

On the other hand, non-linear models have no specific 

characteristics. They can have any characteristic or 

demonstrate any strange behaviour. A model is nonlinear if 

the equations (whose solution yields the parameter 

estimates) of the model depend on the parameters in a 

nonlinear fashion. Such estimation models typically have 

no closed form solution and must be solved as an iterative, 

numerical technique.

2.1.2 Continuous – Time or Discrete – Time Models

The continuous time MPC methods successfully predict the 

future plant. Most of the physical laws used to develop the 

models are differential equations with time as an 
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independent variable. The advantages of these methods 

are allowed to tune the scaling factors, poles and other 

parameters so that, the responses of the system can reach 

to the future plant as quickly as possible. For the processes 

that have short time constant and small sampling interval, 

the prediction of the continuous time MPC is not assured.

If the time space is continuous, the model is called as a 

continuous time model. However, if the input and state 

vectors are defined only for discrete instants of time k, 

where k ranges over the integers, the time space is discrete 

and the model is referred to as a discrete time model. The 

discrete time system evolved with the advent of digital 

computers, the difference equation study assumed a new 

significance. The representation of discrete time non-linear 

difference equation is done as,

 x  = f(x , u ) (9)k+1 k k

2.1.3 Distributed Parameter or Lumped Parameter Models

The MPC concept is completely applicable to the systems 

described by distributed parameter models. In distributed 

parameter model, the controller uses MPC methodology 

to their local subsystems. The multi-level process model 

take information from various controllers which are 

implemented in it, and then use the information into their 

local MPC problem to co-ordinate between multi stages of 

the process simultaneously, and they also exchange their 

predictions by communication between various level of 

the process. Partial Differential Equations (PDE) are involved, 

rather than ordinary differential equations in the distributed 

models. The lumped models are analysed at component 

level and their component properties are self-contained 

and complete with ordinary differential equation/ 

differential equation based on linking component 

parameters for equilibrium equation.

2.1.4 Deterministic or Stochastic Models

If the results of a model are accurately determined through 

the equations of events and states, without any random 

variation, it is referred to as the deterministic model. The 

system model will always produce same output for a given 

set of input. While in stochastic models, the variables are 

taken over a range of values in the form of probability 

distributions. If the model allow us to predict the statistics of 

process variables based on assumptions about random 

effects on the models, it is a stochastic model. The explicit 

stochastic models provide better control in the prediction 

phase of MPC.

2.1.5 Input-Output or State-space Model

Input-output models provide a relation between the 

process input and the output, without reference to 

variables internal to the process. Whereas, states may be 

generated as mathematically convenient, intermediate 

variables of an input-output process model. State-space 

models might include equations relating to all the internal 

variables of the process. 

The MPC algorithm uses the state- space approach, which 

contributes many important issues to the MPC model. The 

formulation leads to the natural embedding of an integral 

action and a simplified form for implementation of the 

MPC.

2.2 Selection of Tuning Parameters

The robustness of Model Predictive Controller (MPC) and its 

nominal stability are deeply affected by the choice of 

various parameters such as feedback methods, weight 

matrices and control horizon. These parameter which 

guarantee the robustness and stability of MPC are well 

known, for a linear system. While in the case of non-linear 

systems, it becomes hard to implement these parameter 

(zero final-state constraint, infinite horizon, etc.). Control 

horizon, penalty weight, prediction horizon and sampling 

interval are some of the most significant tuning 

parameters, which must be tuned appropriately to get the 

desired result. 

2.2.1 Sampling Interval

For a stable minimum phase system, stability does not 

depend on the sampling interval; however, the sampling 

interval is kept in the range, where it can permit the on-line 

computations as well as adequately process the dynamics 

of the system/plant. Large sampling interval can result in 

ringing (excessive oscillations) between the sample points 

[5]. The robustness of an unstable system critically depends 

on the sampling interval chosen. In unstable systems, there 

exists an inverse relationship between the maximum 

allowable size of the sampling interval and model error. 

Since, feedback is only incorporated at the sampling 
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points, the sampling interval must be chosen sufficiently 

small. This is a difficult design issue that has not been fully 

explored for nonlinear systems.

2.2.2 Prediction Horizon

Selection criteria of the prediction horizon for linear systems 

have been provided by various researchers [6]. But the 

concept becomes of much interest when it comes to 

nonlinear systems. Longer horizons are more sensitive to 

disturbances, although this effect can be partially 

mitigated by including a filter in the feedback loop. 

Nominal stability is also strongly affected by the horizon 

length, the horizon length shorter than the critical value 

produce an unstable closed loop in the system [7]. 

2.2.3 Control Horizon

Linear system results indicate that shortening the control 

horizon relative to the prediction horizon tends to produce 

less aggressive controllers, slower system response and less 

sensitivity to disturbances [8]. The effect is very similar to that 

of increasing the penalty on control action in the MPC 

objective function.

2.2.4 Penalty Weights

For choice of weighting matrices, [9] suggested applying 

weights that are inversely related to the maximum 

acceptable range of the variables being penalized. 

Generally, this technique rarely provides good results 

because it over-penalizes control action. To provide good 

performance by the optimization algorithm, so applying a 

penalty to set point deviations that places the objective in 

the interval 1-100 for the range of expected conditions, 

and then applying small penalties (less than 10 percent of 

the output penalty) on control or control increments, to 

achieve good closed loop performance [10] gives a very 

good discussion on scaling issues of optimization.

2.2.5 Collocation Approximation

There are relationshipS between the size of the sampling 

interval, model error, the degree of the interpolating 

polynomial, and the performance and stability of model 

predictive control using orthogonal collocation. These 

relationships have not been quantified, so only heuristic 

guidance can be accepted. Generally, the number of 

collocation points should be selected 2, and should not be 

more than 5. Unless the model predicts rapidly varying 

solutions within one finite element, a smaller number is 

desirable to reduce the computation time.

2.2.6 Filter in Feedback Loop

Filtering the feedback signal, when using steady-state 

target optimization, provides good disturbance rejection 

and fast system response. The choice and effect of the 

disturbance filter is strongly system dependent. A rough 

measure of the effectiveness of the filter is the ratio of 

standard deviation with the filter to the standard deviation 

without the filter. The filter in the feedback loop can be 

effective in reducing the controller sensitivity to output 

disturbance; however, like other methods that slows the 

system response, the filter can induce unstable closed loop 

behaviour with unstable processes in the presence of 

uncertainty. Simulation studies are essential to detect such 

behaviour before implementations.

3. Next Generation MPC

An amalgamated study of next generation model 

predictive controller is very well presented by [11] in his 

paper. The upcoming technologies cover the area of 

business and research in a well-connected fashion.

3.1 Hybrid MPC

In [12], the well-known comment was made; “processes 

that contain discrete components which may be different 

according to the process conditions, and the continuous 

components that are expressed by difference or 

differential equations of the process. Contemplation of 

hybrid systems that have both types of components that 

stimulate a rich area of research relevant to a range of 

important problems of control and controlling schemes in 

the process industries. Many plant/system theoretic 

concepts, as well as regulating strategies like MPC, require 

mending in this context”.

To have a system with more robust stability in Model 

Predictive Control (MPC), input-to-state stability is widely 

used, but it requires careful implementation when the 

system is discontinuous [13-14]. Various hybrid systems 

studies, such as illustrated by [15], partition of the state into 

two components, the mixed logic dynamic description, a 

continuous component lying in and discrete component 
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lying in  have brought up a new interesting research area. A 

powerful alternative is presented by [16] in which a hybrid 

system is described by,

(10)

                                                         (11)

An advance practical and unifying introduction to this 

complex area that handle with, existence of solutions, 

asymptotic stability, uniqueness conditions, inter alia, 

invariance, converse theorems and simulation is given by 

[16]. It ignites to influence future research on hybrid MPC.

A well defined introduction is given in [17, 4], in which an 

interesting area of MPC is highlighted where the control 

strategy is employed to reduce the complex problem of 

automatically synthesizing a control protocol which is 

expressed in temporal logic, into a set of remarkably 

smaller problems.

3.2 Economic MPC

Rapid response with limited overshoot to a step input and 

other traditional design objectives can be achieved with 

the adjustment of various parameters such as running cost 

or stage cost. But on the other hand, profitability is often the 

primary objective in the process industries.

In its recent development stage, Economic MPC has 

encountered various limitations. Some of them are stated, 

firstly, it is not necessary that the most profitable operation of 

the plant occur at an equilibrium set point; the region of most 

profitable operation may be anywhere in the complete 

cycle of the process. Secondly, the transient cost (the cost 

from initial state to the target state of the process) may not be 

optimal as the stage cost and terminal cost are not chosen 

to reflect the economic cost of the process. Thirdly, the 

dynamic model which is employed by the model predictive 

controller that determines an optimal equilibrium is less 

accurate than the steady state model of the same process. 

An equilibrium point determined by the latter may not be 

feasible for the former. The topic of economic MPC has 

attracted considerable attention; the work by [18] presents 

this area of MPC in a very well defined fashion.

3.3 Explicit MPC

The model predictive controller uses the online solution 

procedure to determine the control law or sequence of 

control laws rather than the traditional offline determination 

process for an optimal control problem. This is very 

effective in situations where an explicit solution cannot be 

easily calculated for the given optimal problem. With the 

advancement in the complexity of a process, and 

increased number of process steps, it is rare that an optimal 

control problem comes up with an explicit offline solution, 

now at this point of time, MPC stand a step ahead of other 

controllers. The authors in [19, 3] have proposed, explicit 

solution for problems like the finite horizon, the constrained, 

LQR problem and other. These optimal problems require 

optimal control sequence for each value of the 

parameter, they are parametric quadratic program. The 

implementation of parametric quadratic programming is 

not as easy as its conceptual background. 

3.4 Adaptive MPC

The close loop stability of a system can be more easily 

achieved even when various boundary conditions are 

imposed on the input and state variables. Enormous 

updating in the computation technique has been done, 

since the evolution of adaptive MPC. The close loop 

stability is difficult to guarantee when the MPC is combined 

with feasibility of the system for all times owing to estimated 

parameters and adaption algorithm [20]. This is a reason in 

adaptive control scheme that MPC is not employed as a 

control law. Very little literature is available on adaptive MPC 

and it has also not gained much attention. When 

uncertainty like measurement noise and additive 

disturbance are present in any adaptive control problem, it 

becomes difficult to solve it. Without destroying the 

feasibility of the optimal control problem the introduction of 

persistent excitation is possible which is shown by [21].

Conclusion

A review on the MPC technology and its future 

advancements is presented in this paper. This paper 

presents the MPC control algorithm, the various factors 

influencing it, and the next generation MPC. The MPC 

technology has made a great progress in recent years. 

MPC applications which were used primarily by the process 

industries are now widely used in several industries. Today 

MPC technology offers great capabilities but several 

unnecessary limitations still remain. Due to the limitation in 
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feedback option, it leads to slow rejection of the 

unmeasured disturbance and poor control of integrating 

systems. Limitation of linear MPC are overcome by 

nonlinear MPC. The nonlinear MPC algorithm differ in the 

simplification which is used to generate tractable control 

calculations. Thus, the MPC technique gives the 

satisfactory control solution for various applications. 

References

[1]. Richalet, J., Rault, A., Testud, J. L., & Papon, J., (1978). 

“Model Predictive Heuristic Control: Applications to 

Industrial Processes”. Automatica, Vol.14, pp. 413–428.

[2]. L. Wang, (2002). “A Tutorial on Model Predictive 

Control: Using a Linear Velocity-form Model”. Department 

of Electrical and Computer Engineering, University of 

Newcastle.

[3]. Seron, Maria M., De Dona, Jose A., & Goodwin, 

Graham C., (2000). “Global Analytical Model Predictive 
thControl with Input Constraints”. in Proceedings of the 39  

IEEE Conference on Decision and Control, Sydney, 

Australia, pp.154–159.

[4]. Wongpiromsarn, Tichakorn, Topcu, Ufuk, & Murray, 

Richard M., (2012). “Receding Horizon Temporal Logic 

Planning”. IEEE Transactions on Automatic Control, 

Vol.57(11), pp. 2817–2830.

[5]. C.E. Garcia and M. Morari., (1982). “Internal Model 

Control A Unifying Review and Some New Results”. Industrial 

and Engineering Chemistry Process Design and 

Development, Vol.21, pp.308-323.

[6]. Rawlings, J. B., Angeli, D., & Bates, C. N., (2012). 

“Fundamentals of Economic Model Predictive Control”. in 
stProceedings of 51  IEEE Conference on Decision and 

Control, Maui, Hawaii, pp.3851–3861.

[7]. R. Scattolini and S. Bittanti, (1990). “On the Choice of 

the Horizon in Long-range Predictive Control-some Simple 

Criteria”. Automatica, Vol.26(5), pp.915-917.

[8]. C.V. Rao, S.J. Wright, and J.B. Rawlings, (1998). 

“Application of Interior Point Methods to Model Predictive 

Control”. Journal of Optimization Theory and Applications, 

Vol.99(3), pp.723-757.

[9]. A.E. Bryson and Y. Ho., (1975). Applied Optimal 

Control. Hemisphere Publishing, New York.

[10]. P. E. Gill, W. Murray, and M. H. Wright, (1981). Practical 

Optimization. Academic Press, London.

[11].  Froisy, J. B., (1994). “Model Predictive Control: Past, 

Present and Future”. ISA Transactions, Vol.33, pp.235–243.

[12]. Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. 

O. M., (2000). “Constrained Model Predictive Control: 

Stability and Optimality”. Automatica, Vol.36, pp.789–814.

[13]. Lazar, M., Hemeels, W. P. M. H., & Teel, A. R., (2009). 

“lyapunov Functions, Stability and Input-to-state Stability 

Subtleties for Discrete-time Discontinuous Systems”. IEEE 

Transactions on Automatic Control, Vol.51(11), pp.2421– 

2425.

[14]. Lazar, M., Hemeels, W. P. M. H., & Teel, A. R., (2013). 

“Further Input-to-state Stability Subleties for Discrete-time 

Systems”. IEEE Transactions on Automatic Control, 

Vol.58(6), pp.1609–1613.

[15]. Bemporad, A., and Morari, M., (1999). “Control of 

Systems Integrating Logic, Dynamics, and Constraints”. 

Automatica, Vol.35, pp. 407–427.

[16]. Goebel, Rafal, Sanfelice, Ricardo G., & Teel, A., 

(2009). “Hybrid Dynamical Systems”. IEEE Control Systems 

Magazine, Vol.29(2), pp.28–93.

[17]. Jones, C. N., (2014). “Approximate Receding Horizon 

Control”. Predictive Control for Linear and Hybrid Systems, 

Cambridge University Press.

[18]. J. B. Rawlings and K. R. Muske, (1993). “Stability of 

Constrained Receding Horizon Control”. IEEE Transactions 

on Automation and Control, Vol.38(10), pp.1512-1516.

[19].  Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, 

E., (2002). “The Explicit Linear Quadratic Regulator for 

Constrained Systems”. Automatica, Vol.38(1), pp.3–20.

[20]. Qin, S. J., &Badgwell, T. A., (2003). “A survey of 

Industrial Model Predictive Control Technology”. Control 

Engineering Practice, Vol.11, pp.733–764.

[21]. Marafiore, Giancarlo, Bitmead, Robert R., & Hovd, 

Morten, (2013). “Persistently Exciting Model Predictive 

Control”. International Journal of Adaptive Control and 

Signal Processing, Vol.17(1), pp.15979-15984.

REVIEW PAPERS

45li-manager’s Journal on Instrumentation & Control Engineering  Vol.  No. 1 l,  4   November 2015 - January 2016



ABOUT THE AUTHORS

Prateek Kumar Pathak obtained his B.Tech. (Electrical & Electronics Engineering) Degree from Shri Ram Murti Smarak College of 
Engineering and Technology, Bareilly (Affiliated to Gautam Buddh Technical University) Lucknow (UP), India in 2014. Presently, He 
is pursuing M.Tech (Control & Instrumentation) in the Department of Electrical Engineering at Madan Mohan Malaviya University 
of Technology (erstwhile Madan Mohan Malaviya Engineering College), Gorakhpur (UP). His research interests include Model 
Predictive Control, Optimal Control, and Measurement and Instrumentation. 

Lal Bahadur Prasad obtained his B. E. in Electrical Engineering from Madan Mohan Malaviya Engineering College, Gorakhpur, 
India, in 1994, M. Tech. in Electrical Engineering (Control Systems) from Indian Institute of Technology, B.H.U., Varanasi, India, in 
1997, and Ph.D. from the Department of Electrical Engineering, Indian Institute of Technology Roorkee, India in 2015. He has 
been an IDSE officer and has served as Assistant Executive Engineer (Electrical) in MES, Ministry of Defence, Goverment of India 
during 1997-99. In 1999, he switched over to Engineering teaching career. At present, he is a Assistant Professor (SG) and PG 
Convenor in the Department of Electrical Engineering, Madan Mohan Malaviya University of Technology (formerly Madan 
Mohan Malaviya Engineering College) Gorakhpur, India.

REVIEW PAPERS

46 li-manager’s Journal on Instrumentation & Control Engineering  Vol.  No. 1 l,  4   November 2015 - January 2016


	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52

