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REDUCED ORDER MODELLING OF CONTINUOUS 
TIME SISO SYSTEMS

INTRODUCTION

Many modern mathematical models of real-life processes 

pose challenges when used in numerical simulations, due 

to complexity and large size (dimension). Model Order 

Reduction (MOR) aims to lower the computational 

complexity of such problems, for example, in simulations of 

large-scale dynamical systems and control systems [1], [3]-

[5]. By a reduction of the model's associated state space 

dimension or degrees of freedom, an approximation to the 

original model is computed. This Reduced Order Model 

(ROM) can then be evaluated with lower accuracy, but in 

significantly less time. This paper presents some results and 

approaches to directly address the transient response 

control problem and also steady state response control 

problem [10]-[14]. The main ideas are based on certain 

relations between characteristic polynomial coefficients 

and time domain responses [1]-[2]. New techniques were 

also implemented for reducing the model of complex 

systems.

This research work is undertaken in a two-fold manner; firstly, 

to present new methods for obtaining the reduced order 

models for high order linear time-invariant dynamic 

systems, continuous domain, and secondly, to apply the 

model order reduction philosophy to the design of 

By

controllers for such systems [1], [3], [8]-[12]. The methods 

have developed, mainly to use the transfer function 

description and are applicable to Single-Input Single-

Output (SISO) as well as Multi-Input Multi-Output (MIMO) 

systems [1], [3], [5]. Some new methods have been 

developed for Model Order Reduction that attempt to 

overcome some of the inherent drawbacks of the 

prevalent techniques [3], [5], [10].

1. Reduction of Model Techniques

1.1 Transient Response Control via Characteristic Ratio 

Assignment (CRA)

This is an approach to directly control the transient response 

of linear time-invariant control systems [1], [12]-[13]. The 

main ideas are based on certain relations between 

characteristic polynomial coefficients and time domain 

responses [1]-[2]. In this paper, the authors have begun by 

defining two important sets of parameters called 

generalized time constant and characteristic ratios, [1]-[4]. 

These parameters are written in terms of the coefficients of 

a polynomial [1]-[5]. The properties of these parameters 

with respect to time domain response, in particular, speed 

of response and overshoot, are then derived analytically 

[2]-[12]. These properties are later used to construct a 

desired transfer function and a controller design procedure 

ABSTRACT

Many systems that arise in practice are complex in nature and of a higher-order. The mathematical procedures of 

modeling such systems lead to a comprehensive description of the process in the form of complex, higher-order transfer 

functions or state-space models. This complexity often makes it difficult to obtain a good understanding of the behavior 

of the system. Therefore, higher-order models are difficult to use for simulation, analysis or controller synthesis, and it is not 

only desirable, but often necessary to obtain satisfactory reduced-order representations of such higher-order models. 

The main objective of model order reduction is to obtain a reduced-order approximate of a complex higher-order 

system that retains and reflects the important characteristics of the original system as closely as possible. 

Keywords: Reduced Order Model, CRA (Characteristic Ratio Assignment), AGTM (Approximate Generatized Time 

Management), SISO (Single Input Signal Output ) Systems.

* Assistant Professor, Department of Electrical and Electronics Engineering, Vignan Institute of Information Technology, Andhra Pradesh, India.
** Professor & Principal, Vignan Institute of Information Technology, Visakhapatnam, Andhra Pradesh, India.

RAJESH TANNA * 

By

K. ALICE MARY ** 

24 li-manager’s Journal on Instrumentation & Control Engineering  Vol.  No. 1 l,  4   November 2015 - January 2016



0

1

a

a
=t

for minimum phase plants to achieve a transient response, 

with independently specified overshoot and rise time [2], [9] 

- [10].

1.1.1 Speed of Step Response

If, x(t) is a signal, w(t) = x(βt) is a time scaled version of x(t) and 

is speeded up if β > 1, and slowed down, if 0 < β < 1. Let, y(t) 

denote the forced response, to a step r(t), of a system with 

transfer function G(s). The authors are interested in 

determining a system with transfer function, H(s) so that, its 

forced response to r(t) is y(βt) for a given β > 0. H(s) speeds up 

the step response of G(s) by a factor β, [1]-[3]. Let,

(1)

(2)

1.1.2 Theorem 1

Given G(s) as before, H(s) which speeds up the step 

response of G(s) by a factor β, is uniquely determined by 

one of the following equivalent conditions [1], [3]-[5]:

(3)

(4)

Proof:

Introducing the characteristic ratios and generalized time 

constant for a Hurwitz polynomial [1]-[3]:

(5)

Characteristic ratios is given by,

(6)

and the generalized time constant is given by,      

(7)      

If G(s) is stable and minimum phase, then n, d > 0 for all i’s i i

without loss of generality, and the characteristic ratios of 

N(s) and D(s) are defined accordingly. Let the characteristic 
N D N DH Hratios of N(s), D(s), N (s), and D (s) be a , a , a  and a  H H i i i i

respectively. Similarly, let the generalized time constants of 
N D N DH H those polynomials be, t , t , t and t , respectively.

If G(s) is stable and minimum phase, H(s) is uniquely 

determined by,

(8)
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Remarks: 

1) Equation (3) shows how the coefficients of H(s) can be 

obtained by scaling the corresponding coefficients of 

G(s).

2) Equation (4) shows that the poles and zeros of G(s) are 

moved out along rays from the origin by a factor of β, 

while the “dc” gain G(0) = H(0).

3) Equation (8) shows that the characteristic ratios of the 

numerators and denominators of H(s) remain 

unchanged, respectively, from those of G(s), while the 

generalized time constant of both numerator and 

denominator are reduced by a factor β.

1.1.3 Theorem 2

Let G(s) be an all-pole transfer function [1]-[5]:  

(9)

     

and let α  be the characteristic ratios of p(s). Then,i

1) The frequency magnitude function |G(jω)| is 

monotonically decreasing and

2) p(s) is Hurwitz; if the following two conditions hold:

(10)

Proof:

The detailed proofs can be found in [1]. To prove Theorem 

2, the following lemma are necessary in describing the 

properties of Γ  .k

Lemma 1: For the definition of Γ  in equation (7), we have K

the following

i)  Γ    = Γ  , Γ  = Γ ,…..1 n-1 2 n-2

Γ    = (11)m-1

ii) Consider two polynomials of degrees  n  and  n  (n  > 1 2 1

n ) satisfying the equations (3) and (4) of Theorem 2 and 2

let Γ  (n ) and Γ  (n ) be the corresponding Γ  at n=n  k 1 k 2 k 1

and n=n , respectively. Then,2

Γ (n  ) ≤ Γ (n ) , for all k (12)k 1 k 2

and equality holds at k=1.

iii) 

             k    =                    k = (13)
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Proof of Result-1: 

Consider the square of frequency magnitude of a stable 

all-pole transfer function,

    G(jω)|² =                                   = (14)

Using the relationships given in equations (2) and (3), q(w) is 

given in terms of the characteristic ratios α  and generalized i

time constant t of p(s). 

  Δlk   =       I  = α   α …….α , for k≤ l (15)k k+1 1

Then,

2 2 4q(w)=1 +          . t ω  +                    . t  ω4 

2n 2n+…….+           . t ω . (16)

Result-1 is proved by showing that, the even degree 

function in equation (16) is a monotonically increasing 

function. The function q(w) is monotonically increasing if all 
jthe coefficients are positive. Thus, since all 's D are positive, i

q(w) is a monotonically increasing function if,                                   

(17)

The proof is completed by showing that, equation (17) 

holds under the conditions of equations (3) and (4) in 

Theorem 2. It is not difficult to show by using lemma 1 that 

for  k=1,2,3,…………, n-1,

 for α  = 2 (18)1

                                > 0,  for all α  > 2.1

This concludes the proof of the result (1) in Theorem 2.

Proof of Result-2:

thNote that p(s) is Hurwitz for α  =2. Consequently, the n  order 1

polynomial image p(jω) |α =2 obeys the monotonic 1

phase increase the property and turns np/2 over ωÎ(0,¥) by 

the Mikhailov criterion [3]. Thus, it is enough to show that the 

phase of p(jω) is monotonically increasing over ωÎ(0,¥), for 

all α  > 2. From equations (11), (12),and (15), with ῶ= tω,1

2 2p(jω) = h(-ῶ ) + jῶ g (-ῶ ) (19)

where, 

2h(-ῶ ) = a (20)0

2G(-ῶ )= a  (21)0

RESEARCH PAPERS

Define

                                              = Φ(ω) . (22)

The monotonic phase increase property [3] of p(s),

>0 ,   for all ω ³ 0 is equivalent to,

   L (ῶ)  = g(-ῶ²)h(-ῶ²)+ῶn

                                                  > 0   for all ω ≥ 0 (23)

Rewriting  equation (23), we have for n odd (i.e., n=2m+1)

L (ῶ) = 1+                               +……+ (24)n

                                                                            (k≤m)     

where for k=1, 2, 3,……,n-2. equation (26), shown below, 

holds. From the expression for the denominator of each 

term in equation (24), the phase monotonicity equation 

(23) is satisfied if all m I 's in equation (25) are positive. From 

property, i) in Lemma 1,

m=m, m=m........1 n-2 2 n-3

 (25)    

m= (26)k

Therefore, it is enough to show that m > 0 for I = 1,2,…., m or I

m-1. From property ii) in lemma 1, we also observe that the 

following is true.

l l   D (n ) < D(n ) , for l > k                                (27)k 1 k 2

where,      

l l l-k+1  D (n) = p α  = Γl(n)Γ (n)…..Γ (n) α (28)k i=k i l -1 k 1

Under the condition in equation (26) ,it is clear that if, m(n) for i i

all I are positive, m(n) for all i are also positive for any such a i

polynomial of degree n < n . Thus, the proof of the result (2) 1

is accomplished by showing that, m(n) for all i are positive i

when,            .  

It can be shown by using equation (26) and (28) that for k = 

1,2,3,…..,n-2,

          if  α  =21

                        > 0,  for all      > 2. (29)

Thus the proof is completed.

The authors establish this theorem by showing that, all h ≥ 0 i

when all  a  > 2. Recall equation (17) and write,i

               = (       -2)
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Observe that, 

          =                 …… a >1, for all > a2; any k ≤ l. (31)1 i 

Thus, for a > 2, I =1,2,3,….,n-1, every       is positive.1

The coefficients of p(s) is calculated from characteristic 

ratios and time constant, as follows:

(32)

(33)

Let us consider three all pole transfer functions, T (s) = a /Pk 0 k 

(s) of different orders, but having the same α  and α , which 1 2

are chosen to obtain sufficiently large α  x α . All parameters 1 2

and coefficients are shown in Table 1, and the step 

responses of these transfer functions are shown in Figure 1. 

Therefore the theorem is proved.

Even though the three transfer function models are quite 

different, except having similar values of α , α  and τ; 1 2

surprisingly, they have almost the same step responses. This 

result is caused by the dominance of the characteristic 

ratios α  and α . This idea helps in reducing the order of the 1 2

denominator of a transfer function that has dominant 
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characteristic ratios α  and α .1 2

Remarks

1) The authors experience also shows that increasing α  1

reduces overshoot.

2) Reducing order of the denominator of transfer function 

which is having dominant characteristic ratios α  and α .1 2

This idea of characteristic ratio assignment can be used to 

reduce the order of the denominator of a higher-order of all-

pole transfer function. Now, the focus will be to find methods 

to reduce the order of numerator of a general transfer 

function so that, the step response of the reduced transfer 

function matches the original system as closely as possible. 

2. ROD Methods

To reduce the order of numerator, the authors have 

considered four methods, of which first three methods use 

the CRA technique to find the Reduced Order 

Denominator (ROD). The methods are [5], [6], [8]-[10]:

1. Time moment matching.

2. Time moment and Markov parameter matching.

3. Approximate Generalized Time Moment (AGTM) 

matching.

4.  AGTM matching for obtaining the complete Reduced 

Order Model (ROM).

Consider a SISO system described by a transfer function of 

order 'n'. 

(34)

thThe problem is to determine its stable reduced-order (r -

order) approximate:

(35)

G (s) is a given transfer function and D (s) is found by n r

obtaining reduced order denominator D(s) of the original 

transfer function G(s) through the CRA technique. The order 

'r' of D (s) is the minimum 'r' value up to which the step r

response of transfer function (1/D (s)) tracks the step r

response of transfer function (1/D(s)) as closely as possible.

2.1 Complete Time Moment Matching [5]-[8]

Expanding G (s) around s = 0:n
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n

T (s)1 3 10

T (s)2 5 10

T (s)3 10 10

Coefficients of p (s)    [a … a  a ]k n 1 0

[462.9 166.67 10 1]

[1058 857.3 462.9 166.67 10 1]

[6.932 42.64 174.8 478 871.1 1058 
857.3 462.9 166.67 10 1]

tα = [α  α  ….α ]1 2 n-1

[0.6 6]

[0.6 6 1.5 1.5]

[0.6 6 1.5 1.5…1.5 1.5]

Table 1. Parameters of Three Transfer Functions

Figure 1. Step Response Comparison (Table 1)
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(36)

To find the reduced numerator, equate G (s) to the above r

expansion:

(37)

Multiplying the above equation with D (s) (known from CRA) r

on both sides, and equating the coefficients of equal 

power of 's'; after simplification, the reduced numerator 

coefficients are obtained by solving the following 

equations:

(38)

The numerator coefficients of the reduced model 

obtained by this method ensures good low frequency 

(large time) matching i.e., steady state matching of the 

original system and reduced order model because the 

expansion of G (s) has been done around s=0.n

2.2 Time Moment and Markov Parameter Matching [5], 

[6]-[8]

Expanding G (s) around s = ∞, one obtains:n

(39)

Equating G(s) to the above expansion, the reduced r

numerator polynomial can be obtained. Thus,

(40)

Multiplying the above equation with D (s) (known from CRA) r

on both sides, and equating the coefficients of equal 

powers of 's'; after simplification, the reduced numerator 

coefficients are obtained by solving the following 

equations:

(41)

The numerator coefficients of the reduced model 
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obtained by this method ensures good high frequency 

(transient state) matching of the original and reduced 

transfer functions because expansion of G (s) is taken n

around s=∞.

Now, we know the reduced numerator from both complete 

time moment matching and complete Markov parameter 

matching. In order to obtain a good overall matching of 

time responses of G (s) to G (s) in both transient and steady r n

states, one should match α time moments and β Markov 

parameters, so that α + β = r, the number of unknown 

parameters in the numerator polynomial. The best values 

of α and β to be chosen, depends on the system to be 

reduced, and cannot be determined a-priori. This is an 

open problem for further research.

2.3 Matching AGTMs for obtaining Reduced Numerator 

[5]-[12]

In this method, we will equate the G(s) and G (s) at specific r n

real values of 's'.  

(42)

(43)

where, δ=0.01 and δ=δ*i, for i =1,2,…,r for steady state i

matching; like time moment matching, and  δ=(1/δ)*i, for i i

=1,2,…,r for transient state matching like Markov 

parameter matching.

(44)

(45)

This is in the form of A.x=B and the reduced numerator 

coefficients can be easily obtained by solving the set of 

appropriate linear algebraic equations. One should 

choose an appropriate combination of δ=δ*i and/or i

δ=(1/δ)*i values so that, total number of δ  values = 'r'; thus i i

ensuring a good overall time response approximation.

2. 4 AGTM matching for obtaining the complete ROM 

[12]-[14]

It is similar to the above method, but here both the 

numerator and denominator of reduced transfer function 

are taken as unknowns. So here we should choose total 2r 
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number of δ  values to find 'r' number of reduced i

denominator coefficients and 'r' number of reduced 

numerator coefficients. Proceeding as above and bringing 

the known terms to one side, and the unknown terms to 

other side, and on rearranging, the equation in matrix form 

will be obtained as below:

(46)

(47)

The matrix solution of a set of linear algebraic equations are 

applied to the above matrix equation and the numerator 

and denominator coefficients of the ROM are obtained.

In the following, the authors have consider several 

examples from the literature for order reduction by using all 

the above four methods. The results will be compared to 

find the best reduction method. For comparison, a 

performance index is chosen as the sum of square of error 

in step responses of G(s) and G(s) at the chosen sampled r

points.  Let Y(t) and Y (t) are the step responses of  G(s) and r

G(s). Then the performance index is taken as:r

(48)

 where, m is the number of sampled points.

3. Simulation Results of Continuous Time SISO Systems

3.1 Example 1

The given high order transfer function is taken from [7] 

where, 

Reduced order transfer functions are obtained as: 

1. Complete time moment matching gives:

(49)

2. Two Time moment and One Markov parameter 

matching gives:

RESEARCH PAPERS

(50)

3. AGTM matching for obtaining the numerator polynomial 

gives:

(51)

4. AGTM matching for obtaining the ROM gives: 

(52)

In Figure 2, the step responses of the above transfer 

functions for example 1 are shown. 

3.2 Example 2

The following high order plant transfer function is taken from 

[14] where,

The calculated reduced order transfer functions are: 

1. Complete time moment matching gives:

(53)

2. By matching three time moments and one Markov 

parameter:

(54)

 3. AGTM matching for numerator only gives: 

(55)

4. AGTM matching for both the numerator and 

denominator gives:

(56)

In Figure 3, the step responses of the above transfer 

functions for Example 2, are shown.

From Figures 2 and 3, the ROMs obtained by different 

methods, one can conclude that the AGTM method for 

obtaining ROM gives the best result in matching the original 

transfer function response.

Conclusion

Various methods are described to reduce the order of 

higher-order continuous time, SISO or MIMO transfer. The 

methods are illustrated by solving several examples from 
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Gr (s ) = 1 + s 2.22 + s^2 1.454 + s^3 0.2484

0.1 + s 0.1401 + s^2 0.2484

 ,   J = 5.80355*10^(-2)

Gr (s) =  1  +  s  2.22 +  s^2 1.454 + s^3 0.2484

 0.1  +  s  0.1398 + s^2 0.07334

       ,  J = 0.22047*10^(-2)

Gr (s) = 550.7 + s 754.7 + s^2 81.67 + s^3

55.07 + s 29.99 + s^2 6.116  

  ,  J = 0.00071*10^(-2)

Gr (s) = 1  +  s  3.008 + s^2 3.905 + s^3 2.861 + s^41.236

20.26 + s 50.31 + s^2 53.31 + s^3 29

                          J =79.1010

9600+s28880+s^237492  +  s^3  27470  +  s^4  11870 + s^5 3017 + s^6 437+s^733+s^8

194480+s482964+s^2  511812  +  s^3  278376 +  s^4 82402 + s^5 13285 + s^61086+s^735
)( =sG

Gr (s) = 1
 

+  s  3.008 + s^2 3.905 + s^3 2.861 + s^41.236

20.26
 

+
 

s
 

50.31
 

+
 
s^2

 
53.31

 
+

 
s^3

 
43.28

                  J = 126.4811

Gr (s) =  1  +  s  3.008 + s^2 3.905 + s^3 2.861 + s^4 1.236

20.26) + s 50.31 + s^2 53.31 + s^3 29

                        J = 40.9933

Gr (s) = 8.506 + s 19 + s^2 16.73 + s^3 7.232+s^4

172.3 + s 294.4 + s^2 189.5 + s^3 34.66

                       J = 0.0112
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the literature. In the reduced order modeling method using 

“time moment and Markov parameter matching”, the 

number of time moments and Markov parameters to be 

matched, and the optimal combination to be chosen is 

open to further investigation. 
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