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ABSTRACT

Many systems that arise in practice are complex in nature and of a higher-order. The mathematical procedures of
modeling such systems lead to a comprehensive description of the process in the form of complex, higher-order transfer
functions or state-space models. This complexity often makes it difficult to obtain a good understanding of the behavior
ofthe system. Therefore, higher-order models are difficult to use for simulation, analysis or confroller synthesis, and itis not
only desirable, but offen necessary to obtain satisfactory reduced-order representations of such higher-order models.
The main objective of model order reduction is fo obtain a reduced-order qpproximate of a complex higher-order
system that retains and reflects the important characteristics of the original system as closely as possible.

Keywords: Reduced Order Model, CRA (Characteristic Ratio Assignment), AGTM (Approximate Generatized Time

Management), SISO (Single Input Signal Output ) Systems.

INTRODUCTION

Many modern mathematical models of real-life processes
pose challenges when used in numerical simulations, due
fo complexity and large size (dimension). Model Order
Reduction (MOR) aims to lower the computational
complexity of such problems, for example, in simulations of
large-scale dynamical systems and control systems [1], [3]-
[5]. By a reduction of the model's associated state space
dimension or degrees of freedom, an approximation to the
original model is computed. This Reduced Order Model
(ROM) can then be evaluated with lower accuracy, but in
significantly less fime. This paper presents some results and
approaches to directly address the fransient response
control problem and also steady state response control
problem [10]-[14]. The main ideas are based on certain
relations between characteristic polynomial coefficients
and fime domain responses [1]-[2]. New techniques were
also implemented for reducing the model of complex
systems.

This research work is undertaken in a two-fold manner; firstly,
o present new methods for obtaining the reduced order
models for high order linear time-invariant dynamic
systems, continuous domain, and secondly, to apply the
model order reduction philosophy to the design of

controllers for such systems [1], [3], [8]-[12]. The methods
have developed, mainly to use the fransfer function
description and are applicable to Single-Input Single-
Output (SISO) as well as Multi-lnput Multi-Output (MIMO)
systems [1], [3], [5]. Some new methods have been
developed for Model Order Reduction that attempt o
overcome some of the inherent drawbacks of the
prevalenttechniques[3], [5]. [10].

1. Reduction of Model Techniques

1.1 Transient Response Control via Characteristic Ratio
Assignment (CRA)

This is an approach to directly control the transient response
of linear time-invariant control systems [1], [12]-[13]. The
main ideas are based on certain relations between
characteristic polynomial coefficients and time domain
responses [1]-[2]. In this paper, the authors have begun by
defining two important sets of parameters called
generalized time constant and characteristic ratios, [1]-[4].
These parameters are written in terms of the coefficients of
a polynomial [1]-[5]. The properties of these parameters
with respect to time domain response, in particular, speed
of response and overshoot, are then derived analytically
[2]-[12]. These properties are later used to construct a
desired transfer function and a controller design procedure
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for minimum phase plants to achieve a transient response,
with independently specified overshoot and rise time [2], [9]
-[10].

1.1.1 Speed of Step Response

If, X(t) is a signal, w(t) = x(Bt) is a time scaled version of x(t) and
is speeded upif B > 1, and slowed down, if 0 < B < 1. Let, y(1)
denote the forced response, to a step r(t), of a system with
fransfer function G(s). The authors are interested in
determining a system with fransfer function, H(s) so that, its
forced response to I(f) is y(Bt) for a given 8 > 0. H(s) speeds up
the step response of G(s) by afactor B, [1]-[3]. Let,

G(s):& _n " +n, " s _Ks—z)(s—2)-(s—2,) 0

D)  ds'+d, 5" +erdstdy  (s=p)s—py)s—p,)

Ny(s) _a,s"+a, " ++as+a, K(s—2)(s—2,)-(s-2,)
Dys) b tb s thsth, (- p)s—p)As—p,) D)
1.1.2 Theorem 1

H(s)=

Given G(s) as before, H(s) which speeds up the step
response of G(s) by a factor B, is uniquely determined by
one of the following equivalent conditions [1], [3]-[5]:

3 8 < s 5 6 i o
a=n/f,i=012,...m i b=d/f,j=012,..n 3)
fr' =ﬁ?r‘.‘f=0:1:2:'":m And xf?f :@.".‘izoslszs"'sn:K:ﬁHK (4)

Proof:

Introducing the characteristic ratios and generdlized time
constant for a Hurwitz polynomial [1]-[3]:

p(s)=as"+a, 5" +--+as+a, a >0(5)

Characteristic ratios is given by,

a]2 a22 an—12 [6)
o, = o,=—""—,.,0, , =———
a,a, a,a, a,.»a,
and the generalized time constant is given by,
r=2 (7)

a,
If G(s) is stable and minimum phase, then n, d, > O for alli’s

without loss of generality, and the characteristic ratios of
N(s) and D(s) are defined accordingly. Let the characteristic
ratios of N(s), D(s), Ny(s), and D,(s) be o, o, o and o ¥
respectively. Similarly, let the generadlized time constants of
those polynomialsbe, ", t°, 1" and t ™, respectively.

If G(s) is stable and minimum phase, H(s) is uniquely
determined by,

Ny N . ~ o D . ~
o, " =0, ,i=012,.,m lAnda/' =a; ,j=012..n land 8)

= (1 By 1P :(I/B)(D,ao/bo =n,/d,

Remarks:

1) Equation (3) shows how the coefficients of H(s) can be
obtained by scaling the corresponding coefficients of
G(s).

2) Equation (4) shows that the poles and zeros of G(s) are
moved out along rays from the origin by a factor of 8,
while the “dc” gain G(0) = H(0).

3) Equation (8) shows that the characteristic ratios of the
numerators and denominators of H(s) remain
unchanged, respectively, from those of G(s), while the
generdlized time constant of both numerator and
denominator are reduced by a factor 8.

1.1.3Theorem 2

Let G(s) be an all-pole transfer function [1]-[5]:

4 4 @)
CKS): ~ n-1 o >0
ns) as'+a s +-+as+a,
and let g, be the characteristic ratios of p(s). Then,
1) The frequency magnitude function |G(jw)| is

monotonically decreasing and

2) p(s)is Hurwitz; if the following two conditions hold:

sin(kT”] +sin [%] (10)

oy = &£y,

2 sin (k—n]
n

The detailed proofs can be found in [1]. To prove Theorem
2, the following lemma are necessary in describing the
properties of I', .

a, >2, fork =2,3,..,n-1

Proof:

Lemma 1. For the definition of ', in equation (7), we have

the following

I) r1 :rn-wr2:rn-2w---'

— lr‘m, if n=2m -1
vy _{FML if n=2m (1)

i) Consider two polynomials of degrees n, and n, (N, >
n,) satisfying the equations (3) and (4) of Theorem 2 and
let I, (n,) and I, (n,) be the corresponding I, at n=n,
and n=n,, respectively. Then,
r(n,)sr(n,),forallk (12)
and equalityholdsatk=1.

i)

k1

min, I' k =11mn_mrk E (13)
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Proof of Result-1:

Consider the square of frequency magnitude of a stable
all-pole transfer function,
1

Glw)[?=Z_ (14)

cplale(—ju) T giw)
Using the relo’rlonsmps given in equations (2) and (3), q(w) is
given in terms of the characteristic ratios o, and generalized

fime constant T of p(s).

Ak =T lc= 0 Oypeninnn. a,, forksl (15)
Then,
aw)=1 + & Tw A+ M ‘ wa
5 82 (a2
+on + {ﬂl 353, uﬂit—i}! T W™ (16)

Result-1 is proved by showing that, the even degree
function in equation (16) is a monotonically increasing
function. The function g(w) is monotonically increasing if all
the coefficients are positive. Thus, since all's A’ are positive,
q(w) is @ monotonically increasing functionif,

My =A1 220

Ny =AZAY - 283 +42>0

(17)

Hu—1= eﬁ =-1>0.
The proof is comple’red by showing that, equation (17)
holds under the conditions of equations (3) and (4) in
Theorem 2. It is not difficult fo show by using lemma 1 that
for k=1,2,3,............ ,N-1,

M =0, fora, =2 (18)
dma

-
This concludes the proof of the result (1) in Theorem 2.

Proof of Result-2:

>0, foralla, > 2.

Note that p(s) is Hurwitz for a, =2. Consequently, the n" order
polynomial image p(jw) |a,=2 obeys the monotonic
phase increase the property and furns ni/2 over w (0, ) by
the Mikhailov criterion [3]. Thus, it is enough to show that the
phase of p(jw) is monotonically increasing over we(0,), for
alla, > 2. From equations (11), (12),and (15), with 0= tw,

pliw) = h(-@") +j0 g (-&") (19)
where, s
1——“?+ et AR =& + }
h(-®") = a, o wf_-ﬂi ® (20)
2 1_ﬁ&‘+43f&q_53&6+ =
G(-w)=q, e (21)

Define
#(&) = tan ""_—M = D(w). (22)
dei
The monotonic phase increase property [3] of p(s) —:f

>0, forallw>0isequivalent To

(@) = gLoAnt62+& [Loh(-a) - g(-at) 2]

d

>0 foralw=0 (23

Rewriting equation (23), we have fornodd (i.e., n=2m+1)
L2 4 B2 o
I

L (@) = 1+ alai (24)
T{-;,{jJ &zk + + {qj_._n jJ} '_,_ 1, (kSm]
where fork=1, 2, 3,...... ,N-2. equation (26), shown below,

holds. From the expression for the denominator of each
ferm in equation (24), the phase monotonicity equation
(23) is satisfied if all w1 's in equation (25) are positive. From
property, i)inLemma 1,

My = Hpor o= Hpgeeieens
By = {:*m ~ if n=2m 25)
m+1r ifn=2m+1
kHjtl kHjtl
- { jleﬂk:: h}kllakj fo H-1F(2k 41), fork<m (26)

Im-k- 1Ak+)+1 3 m - 1Ak+j+1+

Tz wAH-)2m-k) -1 forkzm4l

Therefore, itis enough to show that y, > Oforl = 1,2,....,mor
m-1. From propery i) in lemma 1, we also observe that the
following s true.

AL (n,) < AL(n,), forl >k (27)
where,

A n) =m0 =N, N)....MN) e (28)
Under the condition in equation (26) it is clear that if, p(n,) for
all I are positive, p(n) for all i are also positive for any such a
polynomial of degree n < n,. Thus, the proof of the result (2)
is accomplished by showing that, p(n) for all i are positive
when, n — oo,

[t can be shown by using equation (26) and (28) that fork =
1,2,3,.....n-2

Hy=p, if a,=2
dy
.:e_.x,_ >0, forallety> 2, (29)

Thus the proof is completed.

The authors establish this theorem by showing that, alln, =0
whenall g, > 2. Recallequation (17)and write,

M =@ -2
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Mp—1 =(Xp—y -2) (30)
Observe that,
Al =@ @,y ... a, >1,forall > a,2; anyksl. (31)

Thus, fora, > 2,1=1,2,3,.....n-1, every Hy is positive,
The coefficients of p(s) is calculated from characteristic

rafios and time constant, as follows:

a, =1a, Tiao (32)
a, =

o, 00, 00 pri=23n (39)
Let us consider three all pole transfer functions, T, (s) = a,/P,
(s) of different orders, but having the same a, and a,, which
are chosen to obtain sufficiently large a, x a,. All parameters
and coefficients are shown in Table 1, and the step
responses of these tfransfer functions are shown in Figure 1.
Therefore the theorem is proved.

Even though the three transfer function models are quite
different, except having similar values of a,, a, and T;
surprisingly, they have almost the same step responses. This
result is caused by the dominance of the characteristic
ratios a, and a,. This idea helps in reducing the order of the
denominator of a transfer function that has dominant

n a=[aa,..o,] T Coefficients of p,(s) [a,... O, Q)
T(s) 3 [0.66] 10 [462.9166.67 10 1]
T(s) 5 [066151.5] 10 [1058 857.3 462.9 166.67 10 1]

[6.932 42.64 174.8 478 871.1 1058
857.3 462.9 166.67 10 1]

Tfs) 10 [0.661.51.5..1.51.5] 10

Table 1. Parameters of Three Transfer Functions

He

LR
B
2.9
&

0z

gy

§
] 100 ] 1o 160 % e
Tiens in ssenplesi] sample = 1 sec)

Figure 1. Step Response Comparison (Table 1)

characteristic ratios a, and a,,.
Remarks

1) The authors experience also shows that increasing a;
reduces overshoot.

2) Reducing order of the denominator of transfer function
whichis having dominant characteristic ratios a, and a.,.

This idea of characteristic ratio assignment can be used to
reduce the order of the denominator of a higher-order of all-
pole transfer function. Now, the focus will be to find methods
to reduce the order of numerator of a general tfransfer
function so that, the step response of the reduced transfer
function matches the original system as closely as possible.

2.ROD Methods

To reduce the order of numerator, the authors have
considered four methods, of which first three methods use
the CRA technique to find the Reduced Order
Denominator (ROD). The methods are [5], [6], [8]-[10]:

1. Time moment matching.
2. Time moment and Markov parameter matching.

3. Approximate Generalized Time Moment (AGTM)
matching.

4.  AGTM matching for obtaining the complete Reduced
Order Model (ROM).

Consider a SISO system described by a fransfer function of
order'n'.
G,(5) = Y1) _¢

=)

n-1 n-2
48 ta, s T++ais+a, (34)
s"+b, 8" +---+bs+b,

n

n—-1

The problem is to determine its stable reduced-order (I"-
order) approximate:

N,(s) a
D.(s)

1 A ) A A
ST 4a, s+ as+a, (35)

”

G,.(s)= = P —
s"+b s+ +bs+b,

G,(s) is a given fransfer function and D(s) is found by
obtaining reduced order denominator D(s) of the original
fransfer function G(s) through the CRA technique. The order
™ of D(s) is the minimum 'r' value up o which the step
response of fransfer function (1/D(s)) tracks the step
response of fransfer function (1/D(s)) as closely as possible.

2.1 Complete Time Moment Matching [5]-[8]
Expanding G,(s) around s = 0:
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| 36
M) _a,, ST +a, zsl’F +- g5+ a()_to+tls+""_|{n—lsn+"' (36)
DY) S sy

To find the reduced numerator, equate G,s) to the above
expansion:

GE)="~

a7 +a 87+ +als B _y prsiot 4 (87)

s +b RO +bls+b0

Multiplying the above equation with D(s) (known from CRA)
on both sides, and equating the coefficients of equal
power of 's'; after simplification, the reduced numerator
coefficients are obtained by solving the following
equations:

‘io = I;oto (38]
a, = byt, + byt,

G)=

= bl,t, L+ b,t, 5
The numero’ror coefficients of the reduced model
obtained by this method ensures good low frequency
(large time) matching i.e., steady state matching of the
original system and reduced order model because the

expansion of G,(s) has been done around s=0.

+- +brl()

2.2 Time Moment and Markov Parameter Matching [5],
[6]-[8]
Expanding G, (s) around s = oo, one obtains:

(39)
=ms "+ s

G( )_MS) C;H‘SJH%Z +- ﬂ?"‘%
Os) b s ety
Equating G,(s) to the above expansion, the reduced
numerator polynomial can be obtained. Thus,

(40]

G(s)= B840 s ao—mls +mys T eetmsT

S +h s e Ahs+h,
Multiplying the above equation with D(s) (known from CRA)
on both sides, and equating the coefficients of equal
powers of 's'; after simplification, the reduced numerator
coefficients are obtained by solving the following
equations:

d,,=m (41)

a, ,=m,+mb,

r

a ‘—m3+m2b +mb

ay=m, + m,__ll;,__1 +---+mb,
The numerator coefficients of the reduced model

obtained by this method ensures good high frequency
(fransient state) matching of the original and reduced
fransfer functions because expansion of G,(s) is taken
around s=o,

Now, we know the reduced numerator from bboth complete
fime moment matching and complete Markov parameter
matching. In order to obtain a good overall matching of
fime responses of G(s) to G,(s) in both transient and steady
states, one should match a time moments and B Markov
parameters, so that a + B = r, the number of unknown
parameters in the numerator polynomial. The best values
of a and B to be chosen, depends on the system 1o be
reduced, and cannot be determined a-priori. This is an
open problem for further research.

2.3 Matching AGTMs for obtaining Reduced Numerator
[51-12]

In this method, we will equate the G,(s) and G, (s) at specific
realvalues of 's',

=G,(s)|_, =G|, =GG) (42)
=5 =G(6i)*Dr(5i) (43)
where, 6=0.01 and §,=06%i, fori =1,2,....r for steady state
matching; like time moment matching, and 8,=(1/8)*i, fori

=1,2,...,r for fransient state matching like Markov
parameter matching.

= N,(s),

=4 E%—l*fi1 + ‘%—251‘72 +eeka s +d, ]S:és =G(5,)*D,(5;) (44)

18, 8 - - 8" a, G@©)*D, ()
1 82 822 toT SZPI &1 G(Sz)*Dr(SZ) [45]
s, 87 - - 87" |4, [GG)*DG,)

This is in the form of Ax=B and the reduced numerator
coefficients can be easily obtained by solving the set of
appropriate linear algebraic equations. One should
choose an appropriatfe combination of &=0* and/or
=(1/8)*i values so that, total number of §, values = 'r'; thus
ensuring a good overall time response approximation.

2. 4 AGTM matching for obtaining the complete ROM
[12]-[14]
It is similar to the above method, but here both the

numerator and denominator of reduced transfer function
are taken as unknowns. So here we should choose total 2r
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number of & values to find ' number of reduced
denominator coefficients and ' number of reduced
numerator coefficients. Proceeding as above and bringing
the known ferms to one side, and the unknown terms to
other side, and on rearranging, the equation in matrix form
will be obtained as below:

:Ei,,,s”‘+&,,2.v”2+----+d‘.v+ﬁu] . :G(B,)*E’+l;,4.v”‘+----+};ls+l;0:l|v6 (46]

1§, 512 X 5],,\ ~GG,)  -G@)*3, X 7G(5\)*(5|)"J a,
18, 87 - - 8] -GGy ~GE)*S, - - —GE)*E,) :
. b,
15, 38 © 87 -GG, ~GB,)*8, - —GE,)*E) T B,
GG)*6,) (47)
G(8,)*(6,)
G(8,,)*(5,,)

The maitrix solution of a set of linear algebraic equations are
applied to the above matrix equation and the numerator
and denominator coefficients of the ROM are obtained.

In the following, the authors have consider several
examples from the literature for order reduction by using all
the above four methods. The results will be compared to
find the best reduction method. For comparison, a
performance index is chosen as the sum of square of error
in step responses of G(s) and G,(s) af the chosen sampled
points. Let Y(t) and Y(1) are the step responses of G(s) and
G/(s). Then the performance index s taken as:

J=3 01,07 (48)
Wherel,: Im is the number of sampled points.
3. Simulation Results of Continuous Time SISO Systems
3.1 Example 1

The given high order transfer function is taken from [7]
where,

60) §'5+101454 +140695"3+ 6914052 + 140100+ 100000

" S+ 10055 ST ABH00'3 1 5400652+ 226006 e

Reduced order fransfer functions are obtained as:

1. Complete time moment matching gives:
0.06914s"2+0.1401s+0.1 (49)
G, (s)= 0.24845"3+1.454"2+ 2225 +1  1=0.21414%107(2)

2. Two Time moment and One Markov parameter
matching gives:

0.2484 "2 +0.1401s +0.1 (50)
Gl_ (S ) = 0.2484 "3 +1.454 "2 +2.22s+1 , = 5.80355*10/\(_2)

3. AGTM matching for obtaining the numerator polynomial
gives:
0.07334s"2+0.1398 s +0.1

G )= 0248453 14505242225 +1  jomoareiony) )

4. AGTM matching for obtaining the ROM gives:
6.1165"2+29.995+55.07

G.(s)= $"3+81.675"2+754.7s+550.7 | 1=0.00071%10°(-2)

In Figure 2, the step responses of the above transfer

(52)

functions forexample 1 are shown.,
3.2 Example 2

The following high order plant fransfer function is taken from

[14]where,
66)= 357 +1086 50 + 13285 §"5 + 82402 "4 + 278376 5"3+ 511812 5"2 +482964 s + 194480
§"8 +33 5" +4375"6 +3017 §"5 + 11870 s"4 +27470 $"3+ 37492 §"2 + 28880 s+ 9600

The calculated reduced order fransfer functions are:

1. Complete time moment matching gives:
29§"3+53.315"2+50.31s +20.26 (53)
G (5= 1.2365" +2.8615"3+3.9055"2 +3.0085 +1 1=79.1010

2. By matfching three time moments and one Markov

parameter:

43.285"3+53315"2+50.315+20.26 (54)
G, (s)= 1.2365"4+2.8615"3+3.9055"2 +3.008s +1 1=1264811

3. AGTM matching for numerator only gives:
29$"3+53.31s"2+50.315+20.26) (55)
G.(s)= 1.23654+2.8615"3+3.9055"2+3.008s+1

1=40.9933

4. AGTM matching for both the numerator and
denominator gives:

34.665"3+189.55"2+294.45+172.3 (56)
G.(s)= $"4+72328"3+16.735"2+195+8.506

J1=0.0112

In Figure 3, the step responses of the above transfer
functions for Example 2, are shown.,

From Figures 2 and 3, the ROMs obtained by different
methods, one can conclude that the AGTM method for
obtaining ROM gives the best result in matching the original
fransfer function response.

Conclusion

Various methods are described to reduce the order of
higher-order continuous time, SISO or MIMO transfer. The
methods are illustrated by solving several examples from
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Figure 2. Step Response Comparison (Example 1)

the literature. In the reduced order modeling method using
“time moment and Markov parameter matching”, the
number of ime moments and Markov parameters to be
matched, and the optimal combination to be chosen is
open to further investigation.
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