
INTRODUCTION

The ECG signal is the most important tool for the diagnosis 

and finding of various cardiac problems. When ECG 

signal is recorded, it may be corrupted by different types 

of noises such as, Power line interference, Base line 

Wandering, Motion Artifacts, Electrode contact noise, 

Muscle Contraction, Instrumentation, Electro Surgical 

noise, etc [1]. The power line interference is the main 

source of interference due to 50Hz, because it lies in the 

ECG signal band (0.05-100Hz). This artifacts affects the ST 

Segment and degrade the quality of Signal, Frequency 

Resolution and gives high amplitude signals in ECG that 

hide the features which are important for clinical 

monitoring and diagnosis. Removal of these artifacts in 

ECG signal is an important task for better diagnosis. 

Removal of high resolution ECG signal from unwanted 

ECG signal which are contaminated with background 

noise is an important work of research. The ECG signal 

enhancement is to filter the desired signal component 

from the undesired artifacts. So to present an ECG that 

facilitates ECG and accurate interpretation is a necessity. 

Many techniques have been reported in the literature to 

address ECG enhancement using adaptive techniques 

[1-13]. Adaptive filtering techniques permit to find time 

varying potentials and to track the variations of signals [3]. 

Thakor et al. proposed an LMS based adaptive recurrent 

filter to acquire the impulse response of normal QRS 

complexes and then applied it for arrhythmia detection in 

ambulatory ECG recordings. In case LMS algorithm 

operates on an instantaneous basis, then weight vector is 

updated for each sample. The computational 

complexity can be reduced by using the sign based 

algorithms, namely, the signed regressor algorithm, the 

sign algorithm and the sign-sign algorithm [14, 15]. In 

order to work with both the complexity and convergence 

issues, the authors proposed various adaptive filter 

structures based on Normalized Signed Regressor LMS 

(NSRLMS) algorithm, Normalized sign LMS (NLMS) algorithm 

and Normalized Sign-Sign Least Mean Square error 

(NSSLMS) algorithm. These algorithms find less arithmetic 
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complexity because of the sign present in the algorithm 

and best filtering capability because of the normalized 

terms [16, 17]. Discrete Wavelet Transform (DWT) can be 

realized by dividing the signal into low frequency and high 

frequency coefficients. All the adaptive algorithms are 

compared with the performance parameters such as 

Signal to Noise Ratio (SNR), Mean Square Error (MSE), 

Normalized Mean Square Error (NMSE), Percentage Root 

square Difference (%PRD), and after the comparison  sign 

LMS gives better result.

1. Materials and Methods

1.1 ECG Record

MIT-BIH arrhythmia database [17] records the ECG signal. 

It consist of 48 annotated records obtained from 47 

subjects studied by the arrhythmia laboratory of bath 

Israel hospital in Boston between 1975 and 1979. The 

database contains several records in the 100 series, 

which were chosen for the authors for research purpose 

where every record in the arrhythmia database is slightly 

over 30 min. It has a sampling frequency 360 Hz. Header 

file includes information about leads like the patient's age, 

sex and medications [18, 19]. 

1.2 Different Types of Noises

1.2.1 Power Line Interference

Power line interference noise occurs due to two 

mechanisms - Capacitive Coupling and Inductive 

Coupling [20]. Capacitive coupling refers to the transfer of 

energy between two circuits by means of coupling 

capacitance present in the two circuits. Inductive 

coupling is caused due to mutual inductance between 

two conductors. Capacitive coupling and inductive 

coupling is responsible for high frequency and low 

frequency noise respectively. Inductive coupling is more 

dominant for power line interference in ECG. The power 

line interference noise is due to 50 Hz or 60 Hz depending 

on the power supply [21].

1.2.2 Electrode Contact Noise

It is caused due to variations in the position of the heart 

with respect to the electrodes and changes in the 

propagation medium between the electrode position 

and the heart. This causes changes in the amplitude of 

the ECG signal, as well as frequency baseline shifts. Poor 

conductivity between the electrodes and the skin 

reduces the amplitude of signal [21].

1.2.3 Motion Artifacts

Motion artifacts occurs due to the changes of baseline 

caused by electrode motion. The main cause of motion 

artifacts are vibrations, movements, etc. In this ECG signal 

the baseline drift occurs at low frequency (less than 1Hz). 

Motion artifacts depend on the electrode properties and 

electrolyte properties [22].

1.2.4 Electromyography Noise (EMG)

EMG noise is caused due to the contraction of muscles 

besides the heart. EMG noise is random in nature and 

modelled by Gaussian distribution function. The mean of 

this noise is assumed to be zero and variance depends on 

the environmental changes. Frequency of EMG noise is 

between 100-500 Hz [22].

1.2.5 Instrumentation Noises

Noises also occurs when measuring instruments. Major 

source of such noises are electrical probes, cables, Signal 

amplifier and Analog to Digital converter. Another types of 

noise is colour noise or flicker noise is a low frequency 

electronic noise [22].

1.3 Adaptive Filter

Adaptive filter works as a linear filter, transfer function of 

adaptive filter which is controlled by variable parameters 

(coefficient). Figure 1 shows the block diagram of an 

Adaptive Filter. Its function is to adjust the variable 

parameter according to optimization algorithm and 

adapt according to the change in signal characteristics 

in order to minimize the error. It involves changing of filter 

coefficients over time. The vector representation of input 
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Figure 1. Block Diagram of Adaptive Filter [23]



signal [23]  X(n) is given as,

X(n)=[x(n),x(n-1),-,x(n-N-1)] (1)

Signal at the input of adaptive filter is corrupted with noise. 

It becomes the sum of desired signal d(n) and noise e(n).

Adaptive filter has Finite Impulse Response (FIR) structure. 

Its impulse response is equal to the filter coefficient. The 

coefficients for a filter of order N [23] is,

W(n)=[w(0),w(1),---,w(N-1)]T (2)

Output of adaptive filter is y(n) given by,

y(n)= W(n)T X(n) (3)

Error signal is

E(n)= d(n)-y(n) (4)

Each and every time the instant variable filter updates the 

filter coefficients,

W(n+1)= W(n) + W(n) (5)

where W(n) is a correction factor for filter coefficients

1.3.1 LMS (Least Mean Square)

It works only on error at the current time, hence filter 

weights are only adapted based on the error at the current 

time [23, 24].

According to this algorithm, updated weight is given by

W(n+1)=W(n)+ 2.

D

D

m.X(n).e(n) (6)

where m is step size.

1.3.2 NLMS (Normalized Least Mean Square)

It is an upgraded version of LMS. It updates the coefficient 

of adaptive filter. Step size of NLMS algorithm varies 

according to time [23, 24].

According to this algorithm, the updated weight is given 

by,

W(n+1)=w(n)+2.µ (7)

W(n+1)=w(n)+ 2.µ(n).x(n).e(n) (8)

where m  (n) = m  / [mod of x (n) 2]

1.3.3 SELMS Algorithm

In this algorithm, the sign function is applied to the error 

signal to update the filter coefficient of an adaptive filter 

[23, 24].

According to this algorithm, the updated weight is given by,

W (n+1)=W(n)+ 2.µ x( n).sgn(e( n)) (9)

1.3.4 SSLMS Algorithm

In this algorithm, the sign function is applied to both input 

and error signal to update the filter coefficient of the 

adaptive filter [23].

According to this algorithm, the updated weight is given 

by,

W(n+1)= w(n)+2.µ.sgn(x(n).sign(e(n)) (10)

1.4 Discrete Wavelet Transform (DWT)

For analysis of non-stationary signals, wavelet transform is 

a powerful method. ECG signal are non-stationary and 

time varying signals. So wavelet transform is suitable for 

the analysis of ECG signal. Wavelet allow both time and 

frequency analysis of signals. Discrete Wavelet Transform 

analyze the signal as a linear combination of the sum of 

the product of Wavelet coefficients [20].

2. Performance Evaluation Parameters 

2.1 Time Domain Analysis

If x(n) is the recorded signal or ECG signal, xn, represents 

the noisy signal and xm is the filtered ECG signal, the Mean 

Square Error (MSE) is defined as [20, 24], 

(11)

The Normalized form of NMSE is,

(12)

The Normalized form of NRMSE is,

(13)

percentage Root mean square error Difference (%PRD) is,

(14)

Signal to Noise Ratio in dB (SNR) is given as,

(15)

[ x(n)

(mod of x(n).2
.e(n)

[
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3. Result

The values of various performance evaluators (SNR, %PRD, 

MSE, NRMSE, RMSE) of noisy (colour noise), Adaptive RLS 

filtered and Adaptive NLMS filtered, Adaptive LMS filtered, 

Adaptive sign-LMS filtered and Adaptive QDRLS filtered 

ECG signal are evaluated as shown in Table 1. The high 

values of SNR and low values of %PRD and MSE are good. 

From Table 1, the authors find that noisy signal's SNR is very 

low, but all the filtered signal have high SNR after filtering 

the signal that have low %PRD and MSE. Noisy ECG signal 

(Gaussian noise) are filtered using various adaptive 

algorithms and parameters shown in Table 2. Similarly 

Table 3 shows the result for noisy ECG signal due to the 

power line interference noise. In the result, Figure 2, Figure 

3, Figure 4, Figure 5, Figure 6 shows Gaussian noise added 

in ECG signal and filtered using NLMS, RLS, S-LMS, LMS, 

QDRLS algorithms respectively. After studying the result, 

the authors finds out the better adaptive filter for removal 

of ECG noise and showing better result for the 

performance parameters. Figure 7, Figure 8, Figure 9, 

Figure 10, Figure 11 shows colour noise added with ECG 

signal and then filtered using various adaptive algorithms 

such as NLMS, RLS, SS-LMS, S-LMS, QDRLS respectively. 

Similarly, Figure 12, Figure 13, Figure 14, Figure 15, Figure 

16 shows the power noise. Table 1 shows that comparison 

of different algorithms using performance parameters for 

colour noise. Table 2 shows that, comparison of different 

algorithms using the performance parameters for 

Gaussian noise. Similarly Table 3 shows the performance 
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Parameters

Performance Evaluators of Color Noise

ECG Recorded Data 106 Database

MSE NRMSE %PRD RMSE SNR

NLMS 0.0188 0.0028 0.2820 0.1304 18.6780

RLS 6.392e-05 1.644e-04 0.0164 0.0164 -0.0310

SSLMS 0.0262 0.0033 0.3331 0.331 -4.3914

SLMS 0.0557 0.0049 0.4852 0.4852 -4.8530

QDRLS 6.427e-05 1.648e-04 0.0172 0.0165 -0.0325

Table 1. Comparison of different Algorithms using Performance 
Parameters for Colour Noise

Parameters

Performance Evaluators of Gaussian Noise

ECG Recorded Data 106 Database

MSE NRMSE %PRD RMSE SNR

NLMS 0.01699 0.0027 0.2681 0.1304 21.3574

RLS 6.391e-05 1.644e-04 0.0164 0.0080

SSLMS 0.02623 0.0033 0.3331 0.1620 -4.3909

SLMS 0.0556 0.0049 0.4852 0.2359

QDRLS 6.967e-05 1.716e-04 0.0172 0.0083

-0.0308

-4.8515

-0.0329

Table 2. Comparison of different Algorithms using Performance 
Parameters for Gaussian Noise

Parameters

Performance Evaluators of Gaussian Noise

ECG Recorded Data 106 Database

MSE NRMSE %PRD RMSE SNR

NLMS 1.406e-04 2.438e-04 0.0244 0.0119 0.3745

RLS 6.404e-04 1.645e-04 0.0165 0.0080

SSLMS 0.0262 0.0033 0.3331 0.1620 -4.3829

SLMS 0.0557 0.0049 0.4852 0.2360

QDRLS 6.976e-05 1.717e-04 0.0172 0.0084

-0.0272

-4.8373

-0.0398

Table 3. Comparison of different Algorithms using Performance 
Parameters for Power Line Noise

Figure 2. Gaussian Noise added with ECG Signal and Filtered
NLMS algorithms

Figure 3. Gaussian Noise added with ECG Signal and Filtered
RLS algorithms
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evaluation for power line interference noise.

4. Discussion

In this paper, simulation result is found in sequence to 

verify the performance of various techniques, artifacts like 
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Figure 4. Gaussian Noise added with ECG Signal and filtered
using SLMS Algorithm

Figure 5. Gaussian Noise Filtered using LMS Algorithm

Figure 6. Gaussian Noise Filtered using QDRLS Algorithm

Figure 7. Colour Noise Filtered using NLMS Algorithm

Figure 8. Colour Noise Filtered using RLS Algorithm

Figure 9. Colour Noise Filtered using SSLMS Algorithm
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baseline wander, Power line interference, EMG noise and 

muscle artifacts with introduced in the ECG signal and the 

unwanted ECG signal is introduced to the filters. To ensure 

the stability of the outcomes, the entire method was 

repeated over the 7 ECG segments. The filters output SNR, 

MSE, %PRD finds the filter quality of separate desired signal 

from the undesired signal.
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Figure 10. Colour Noise Filtered using SLMS Algorithm

Figure 11. Colour Noise Filtered using QDRLS Algorithm

Figure 12. Power Noise Filtered using NLMS Algorithm

Figure 13. Power Noise Filtered using RLS Algorithm

Figure 14. Power Noise Filtered using SLMS Algorithm

Figure 15. Power Noise Filtered using SSLMS Algorithm
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Conclusion 

In this work, the authors have implemented various 

algorithm of adaptive filter for removing artifacts 

contaminated with ECG signal during recording. The 

adaptive algorithms LMS, NLMS, RLS, Sign-LMS, SSLMS were 

capable to remove noises such as white noise, colour 

noise, muscle artifacts, electrode contact noise, baseline 

wander noise, composite noise and power line 

interference properly. The performance of all algorithms 

was evaluated by parameters such as SNR, %PRD, MSE, 

NMSE. In comparison to various adaptive algorithms, 

SSLMS gives better result for all parameters with MSE = 

0.0262, NRMSE = 0.0033, %PRD = 0.3331 and RMSE = 

0.331, SNR = -4.3914.
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