
 RESEARCH PAPERS

INTRODUCTION

Neural networks, more accurately called Artificial Neural

Networks (ANN), are computational models that consist of

a number of simple processing units that communicate

by sending signals to each other over a large number of

weighted connections. They were originally developed

from the inspiration of human brains. In human brains, a

biological neuron collects signal from the other neurons

through a host of fine structures called dendrites. The

neuron sends out spikes of electrical activity through a

long, thin strand known as an axon, which splits into

thousands of branches. At the end of each branch, a

structure called a synapse, converts the activity from the

axon into electrical effects that inhibit or excite activity in

the connected neurons. When a neuron receives

excitatory input that is sufficiently large compared with its

inhibitory input, it sends a spike of electrical activity down

its axon. Learning occurs by changing the effectiveness of

the synapses, so that the influence of one neuron on other

changes.

Like human brains, neural networks also consist of

processing units (artificial neurons) and connections

(weights) between them. The processing units, transport

incoming information on their outgoing connections to

other units. The "electrical" information is simulated with

specific values stored in those weights that make these

networks have the capacity to learn, memorize, and

create relationships amongst the data.

A very important feature of these networks is their adaptive

nature, where "learning by example" replaces

"programming" in solving problems. This feature renders

these computational models very appealing in

application domains, where one has little or incomplete

understanding of the problems to be solved, but where

training data are available.

There are many different types of neural networks, and

* Assistant Professor, Department of Computer Science and Engineering, Matrusi Engineering College, Hyderabad, India.
** Professor, Department of Computer Science and Engineering, Trinity College of Engineering & Technology Karimnagar, India.

*** Professor, Department of Computer Science and Engineering, Siddhartha Institute of Engineering & Technology, Hyderabad, India.

ABSTRACT

This paper describes and evaluates several global optimization issues of Artificial Neural Networks (ANN) and their

applications. In this paper, the authors examine the properties of the feed-forward neural networks and the process of

determining the appropriate network inputs and architecture, and built up a short-term gas load forecast system - the Tell

Future system. This system performs very well for short-term gas load forecasting, which is built based on various Back-

Propagation (BP) algorithms. The standard Back-Propagation (BP) algorithm for training feed-forward neural networks have

proven robust even for difficult problems. In order to forecast the future load from the trained networks, the history loads,

temperature, wind velocity, and calendar information should be used in addition to the predicted future temperature and

wind velocity. Compared to other regression methods, the neural networks allow more flexible relationships between

temperature, wind, calendar information and load pattern. Feed-forward neural networks can be used in many kinds of

forecasting in different industrial areas. Similar models can be built to make electric load forecasting, daily water

consumption forecasting, stock and markets forecasting, traffic flow and product sales forecasting.

Keywords: Neural Networks, Feed Forward Networks, Recurrent Networks, Network Learning, Layered Networks, Back

Propagation.

K. SUNIL MANOHAR REDDY *

By

G. RAVINDRA BABU **

GLOBAL OPTIMIZATION FOR THE FORWARD NEURAL
NETWORKS AND THEIR APPLICATIONS

S. KRISHNA MOHAN RAO ***

9li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

they are being used in many fields. And new uses for

neural networks are devised daily by researchers. Some of

the most traditional applications include [1], [2], [17].

·Classification – To determine military operations from

satellite photographs; to distinguish among different

types of radar returns (weather, birds, or aircraft); to

identify diseases of the heart from electrocardiograms.

·Noise reduction – To recognize a number of patterns

(voice, images, etc.) corrupted by noise.

·Prediction – To predict the value of a variable given

historic value. Examples include forecasting of

various types of loads, market and stock forecasting,

and weather forecasting. The model built in this thesis

falls into this category.

Fundamentals of Neural Networks

Neural networks, sometimes referred to as connectionist

models, or parallel-distributed models that have several

distinguishing features [3], [18]:

·A set of processing units;

·An activation state of each unit, which is equivalent to

the output of the unit;

·Connections between the units. Generally, each

connection is defined by a weight w that determines jk,

the effect that the signal of unit j has on unit k;

·Propagation rule, which determines the effective

input of the unit from its external inputs;

·An activation function, which determines the new

level of activation based on the effective input and

the current activation;

·An external input (bias, offset) for each unit;

·A method for information gathering (learning rule);

·An environment within which the system can operate,

provides input signals and, if necessary, error signals.

Processing Unit

A processing unit (Figure 1), also called a neuron or node,

performs a relatively simple job; it receives input from the

neighbors or external sources and uses them to compute

an output signal that is propagated to other units.

Within the neural systems, there are three types of units:

·Input units, which receive data outside the

network;

·Output units, which send data out of the network;

·Hidden units, whose input and output signals remain

within the network [18].

Each unit j can have one or more inputs x , x , x , … x , but 0 1 2 n

only one output z . An input to a unit is either the data j

outside the network, or the output of another unit, or its own

output.

Combination Function

Each non-input unit in a neural network combines values

that are fed into it via synaptic connections from other

units, producing a single value called net input. The

function that combines the values is called the

combination function, which is defined by a certain

propagation rule. In most neural networks, the authors

assume that, each unit provides an additive contribution

to the input of the unit with which it is connected. The total

input to unit j is simply the weighted sum of the separate

outputs from the connected units plus a threshold or bias

term q:j

(1)

The contribution for positive w is considered as an ji

excitation and an inhibition for negative w . The units with ji

the above propagation rules are termed as sigma units.

In some cases ,more complex rules for combining inputs

are used. One of the propagation rule known as sigma-pi

has the following format [3]:

(2)

Lots of combination functions usually use a "bias" or

"threshold" term in computing the net input to the unit. For

a linear output unit, a bias term is equivalent to an

Figure 1. Processing Unit

j

n

i

ijij xwa q+=å
=1

j

n

i

m

k

ikjij xwa q+=åÕ
= =1 1

10 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

 RESEARCH PAPERS

intercept in a regression model. It is needed in much the

same way as the constant polynomial '1' is required for

approximation by polynomials.

Activation Function

Most units in neural network transform their net inputs by

using a scalar-to-scalar function called an activation

function, yielding a value called the unit's activation.

Except possibly for output units, the activation value is fed

to one or more other units. Activation functions with a

bounded range are often called squashing functions.

Some of the most commonly used activation functions

are [4],[18]:

·Identity function (Figure 2)

 g(x) = x (3)

It is obvious that, the input units use the identity function.

Sometimes a constant is multiplied by the net input to

form a linear function.

·Binary step function (Figure 3)

Also known as threshold function or Heaviside function.

The output of this function is limited to one of the two

values:

(4)

This kind of function is often used in single layer networks.

·Sigmoid function (Figure 4)

(5)

This function is especially advantageous for the use in

neural networks trained by Back-Propagation; because it

is easy to differentiate, and thus can dramatically reduce

the computation burden for training. It applies to

applications whose desired output values are between 0

and 1.

·Bipolar sigmoid function (Figure 5)

(6)

This function has similar properties with the sigmoid

function. It works well for applications that yield output

values in the range of [-1,1].

Activation functions for the hidden units are needed to

introduce non-linearity into the networks. The reason is

that, a composition of linear functions is again a linear

function. However, it is the non-linearity (i.e., the capability

to represent nonlinear functions) that makes multi-layer

networks so powerful. Almost any nonlinear function does

the job, although for Back-Propagation learning, it must

be differentiable and it helps if the function is bounded.

The sigmoid functions are the most common choices [5].

For the output units, activation functions should be chosen

to be suited to the distribution of the target values. The

authors have already seen that, for binary [0,1] outputs,

the sigmoid function is an excellent choice. For

continuous-valued targets with a bounded range, the

sigmoid functions are again useful, provided that, either

the outputs or the targets to be scaled to the range of the

output activation function. But if the target values have no

known bounded range, it is better to use an unbounded

activation function, most often the identity function (which

amounts to no activation function). If the target values are

î
í
ì

<

³
=

) if(

) if(

0

1
)(

q

q

x

x
xg

Figure 2. Identity Function

Figure 3. Binary Step Function

xe
xg

-+
=

1

1
)(

Figure 4. Sigmoid Function

Figure 5. Bipolar Sigmoid Function

x

x

e

e
xg

-

-

+

-
=

1

1
)(

11li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

positive, but have no known upper bound, an exponential

output activation function can be used [5].

Network Topologies

The number of layers, the number of units per layer, and

the interconnection patterns between layers defines the

topology of a network. They are generally divided into two

categories based on the pattern of connections:

1. Feed-forward Networks: The data flow from input units

to output units is strictly feed-forward. The data processing

can extend over multiple layers of units, but no feedback

connections are present. That is, connections extending

from the outputs of units to inputs of units in the same layer

or previous layers are not permitted. Feed-forward

networks are the main focus of this thesis.

2. Recurrent Networks: Itcontains feedback connections.

Contrary to feed-forward networks, the dynamical

properties of the network are important. In some cases, the

activation values of the units undergo a relaxation process

such that, the network will evolve to a stable state in which

the activation does not change further. In other

applications, where the dynamical behavior constitutes the

output of the network, the changes of the activation values

of the output units are significant (Figure 6).

Network Learning

The functionality of a neural network is determined by the

combination of the topology (number of layers, number

of units per layer, and the interconnection pattern

between the layers) and the weight of the connections

within the network. The topology is usually held fixed, and a

certain training algorithm determines the weight. The

process of adjusting the weights to make the network learn

the relationship between the inputs and targets is called

learning, or training. Many learning algorithms have been

invented to help find an optimum set of weights that result

in the solution of the problems. They can roughly be

divided into two main groups:

1. Supervised Learning: The network is trained by providing

it with inputs and desired outputs (target values). These

input-output pairs are provided by an external teacher, or

by the system containing the network. The difference

between the real outputs and the desired outputs is used

by the algorithm to adapt the weights in the network

(Figure 7). It is often posed as a function approximation

problem - given training data consisting of pairs of input

patterns x, and corresponding target t, the goal is to find a

function f(x) that matches the desired response for each

training input.

2. Unsupervised Learning: With unsupervised learning,

there is no feedback from the environment to indicate if

the outputs of the network are correct. The network must

discover features, regulations, correlations, or categories

in the input data automatically. In fact, for most varieties of

unsupervised learning, the targets are the same as inputs.

In other words, unsupervised learning usually performs the

same task as an auto-associative network, compressing

the information from the inputs.

1. Purpose

To train a network and measure how well it performs, an

objective function (or cost function) must be defined to

provide an unambiguous numerical rating of system

performance. Selection of an objective function is very

important, because the function represents the design

Figure 6. Recurrent Neural Network Figure 7. Supervised Learning Model

Training Data

Network

Training Algorithm
(optimization method)

Objective
Function

Input Desired output

in out

Weight
changes

target

error+
-

12 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

 RESEARCH PAPERS

goals and decides what training algorithm can be taken.

To develop an objective function that measures exactly

what we want is not an easy task. A few basic functions are

very commonly used. One of them is the sum of squares

error function,

(7)

where, p indexes the patterns in the training set, i indexes

the output nodes, and t and y are the target and the pi pi

th thactual network output for the i output unit on the p

pattern respectively. In real world applications, it may be

necessary to complicate the function with additional

terms to control the complexity of the model.

2. Basic Architecture

A layered feed-forward network consists of a certain

number of layers, and each layer contains a certain

number of units. There is an input layer, an output layer,

and one or more hidden layers between the input and the

output layer. Each unit receives its inputs directly from the

previous layer (except for input units) and sends its output

directly to units in the next layer (except for output units).

Unlike the Recurrent network, which contains feedback

information, there are no connections from any of the

units of the input of the previous layers nor to other units in

the same layer, nor to the units more than one layer

ahead. Every unit acts only as an input to the immediate

next layer. Obviously, this class of networks is easier to

analyze theoretically than other general topologies

because their outputs can be represented by explicit

functions of the inputs and the weights.

An example of a layered network with one hidden layer is

shown in Figure 8. In this network there are l inputs, m
thhidden units, and n output units. The output of the j

hidden unit is obtained by first, forming a weighted linear

combination of the l input values, then adding a bias,

(8)

(1)where w is the weight from input i to hidden unit j in the ji

(1)first layer and w is the bias for hidden unit j. If the bias ji

term are considered as being weights from an extra input

x = 1, (8) can be rewritten in the form of,0

(9)

The activation of hidden unit j then can be obtained by

transforming the linear sum using an activation function

g(x):

 h = g(a) (10)j j

The outputs of the network can be obtained by

transforming the activation of the hidden units using a

second layer of processing units. For each output unit k,

first we get the linear combination of the output of the

hidden units are obtained as,

(11)

Again, the bias is observed and the above equation is

rewritten into,

(12)

Then applying the activation function g2(x) to equations
th(12) we can get the k output

 yk = g2(ak) (13)

Combining equations (9), (10), (12) and (13) the complete

representation of network is represented as,

(14)

The network shown in Figure 8 is a network with one hidden

layer. It can extended to have two or more hidden layers

easily as long as the above transformation is carried out

further.

One thing to be noted is that, the input units are very

special units. They are hypothetical units that produce

outputs equal to their supposed inputs. These input units

do no processing.

3. Back-Propagation

Back-Propagation is the most commonly used method for

åå
==

-=
N

i

pipi

P

p

yt
NP

E
1

2

1

)(
1

Figure 8. Feed-forward neural network

x1

x
2

h2

xl

h1

hm

y1

y2

y
n

… … …

x0 h0

Input Layer Hidden Layer Output Layer

bias bias

)1(
jiw)2(

kjw

å
=

+=
l

i

jijij wxwa
1

0
)1()1(

å
=

=
l

i

ijij xwa
0

)1(

å
=

+=
m

j
kjkjk whwa

1

)2(
0

)2(

å
=

=
m

j

jkjk hwa
0

)2(

))((2
0 0

)1()2(åå
= =

=
m

j

l

i

ijikjk xwgwgy

13li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

training multi-layer feed-forward networks. It can be

applied to any feed-forward network with differentiable

activation functions. This technique was popularized by

Rumelhart, Hinton and Williams [6].

For most networks, the learning process is based on a

suitable error function, which is then minimized with

respect to the weights and bias. If a network has

differential activation functions, then the activations of the

output units become differentiable functions of input

variables, the weights and bias. If the authors also define a

differentiable error function of the network outputs such as

the sum-of-square error function, then the error function

itself is a differentiable function of the weights. Therefore,

the derivative of the error with respect to weights can be

evaluated, and these derivatives can then be used to find

the weights that minimize the error function, by either using

the popular gradient descent or other optimization

methods. The algorithm for evaluating the derivative of

the error function is known as back-propagation, because

it propagates the errors backward through the network.

3.1 Error Function Derivative Calculation

The authors consider a general feed-forward network with

arbitrary differentiable non-linear activation functions and

a differential error function.

We know that, each unit j is obtained by first forming a

weighted sum of its inputs of the form,

(15)

where z is the activation of a unit, or input. The authors then i

apply the activation function,

 z = g(a) (16)j j

Note that one or more of the variables z in equation (15) j

could be an input, in which case, it will be denoted by x . i

Similarly, the unit j in equation (16) could be an output unit,

which we will denote by y .k

The error function will be written as a sum, the overall

patterns in the training set of an error defined for each

pattern separately is,

(17)

where, p indexes the patterns, Y is the vector of outputs,

and W is the vector of all weights. E can be expressed as a p

differentiable function of the output variable y .k

The goal is to find a way to evaluate the derivatives of the

error functions E with respect to the weights and bias. Using

equation (17), these derivatives are expressed as sums over

the training set patterns of the derivatives for each pattern

separately. Now, one pattern at a time is considered.

For each pattern, with all the inputs, the activations of all

hidden and output units in the network is obtained by

successive application of equations (15) and (16). This

process is called forward propagation or forward pass.

Once the activations of all the outputs, together with the

target values, are available, the full expression of the error

function E is achieved.p

Now, consider the evaluation of the derivative of E with p

respect to some weight w . Applying the chain rule can ji

get the partial derivatives,

(18)

where,

(19)

From equation (18), it is easy to see that, the derivative

can be obtained by multiplying the value of δ for the unit

at the output end of the weight by the value of z for the unit

at the input end. Thus, the task becomes to find the δ for j

each hidden and output unit in the network.

For the output unit, δ is very straightforward,k

(20)

For a hidden unit, δ is obtained indirectly. Hidden units can k

influence the error only through their effects on the unit k to

which they send output connections. So,

(21)

The first factor is just the δ of unit k. So,k

(22)

For the second factor, if unit j connects directly to unit k

then , otherwise it is zero. So the following

Back-propagation formula is given,

(23)

which means that, the values of δ for a particular hidden

unit can be obtained by propagating the δ's backwards

from units later in the network, as shown in Figure 9.

å=
i

ijij zwa

å=
p

pEE);(WYEEp =

ij

ji

j
j

ji

j

j

p

ji

p
z

w

a

w

a

a

E

w

E
dd=

¶

¶
=

¶

¶

¶

¶
=

¶

¶

j

p
j

a

E

¶

¶
=d

)(k

k

p

k

p
k ag

y

E

a

E
¢

¶

¶
=

¶

¶
=d

j

k

k k

p

j

p
j

a

a

a

E

a

E

¶

¶

¶

¶
=

¶

¶
=åd

j

k

k

k

j

p
j

a

a

a

E

¶

¶
=

¶

¶
=ådd

kjjjk wagaa)(¢=¶¶

k

k

kjjj wag dd å¢=)(

14 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

 RESEARCH PAPERS

Recursively applying the equation gets the δ's for all of the

hidden units in a feed-forward network, no matter how

many layers it has.

3.2 Weight Adjustment with the Gradient Descent

Method

Once, the derivatives of the error function with respect to

weights are obtained, it can be used to update the

weights so as to decrease the error. There are many

varieties of gradient-based optimization algorithms

based on these derivatives. One of the simplest of such

algorithms is called a gradient descent or steepest

descent. With this algorithm, the weights are updated in

the direction in which the error E decreases most rapidly,

i.e., along the negative gradient. The weight updating

process begins with an initial guess for weights (which

might be chosen randomly), and then generates a

sequence of weights using the following formula,

(24)

where, η is a small positive number called the learning

rate, which is step size to be taken for the next step.

Gradient descent tells only the direction we will move to,

but the step size or learning rate needs to be decided as

well. Too low a learning rate makes the network learn very

slowly, while too high a learning rate will lead to oscillation.

One way to avoid oscillation for large η is to make the

weight change dependent on the past weight change by

adding a momentum term,

(25)

That is, the weight change is a combination of a step

down the negative gradient, plus a fraction α of the

previous weight change, where, 0 £ a < 1 and typically

0 £ a < 0.9 [6].

The role of the learning rate and the momentum term are

shown in Figure 10 [3]. When no momentum term is used, it

typically takes a long time before the minimum is reached

with a low learning rate (a), whereas for large learning

rates the minimum may be never reached because of

oscillation (b). When adding a momentum term, the

minimum will be reached faster (c).

There are two basic weight-update variations: batch

learning and incremental learning. With batch learning,

the weights are updated over all the training data. It

repeats the following loop: a) Process all the training data;

b) Update the weights. Each such loop through the

training set is called an epoch. While for incremental

learning, the weights are updated for each sample

separately. It repeats the following loop: a) Process one

sample from the training data; b) Update the weights.

4. Data Tables

Table 1 provides the input data and Table 2 refers to the

data processing table. Given the above input data, the

model can be set up to reflect up to the following six

effects:

·Temperature: represented by its actual value.

·Wind velocity: represented by its actual value.

Figure 9. Backward Propagation

k

… kd
jd

kjwjiw

k

k

kjjj wag dd å¢=)(

ji

ji
ji

w

E
w

¶

¶
-=D+ ht)1(

)()1(tt ah ji
ji

ji w
w

E
w D+

¶

¶
-=D+

Figure 10. The Descent vs. Learning Rate and Momentum

Temperature Wind Hour Weekday Weekend Month Load

37 3 00 6 1 1 1168

37 9 01 6 1 1 1213

37 6 02 6 1 1 1316

37 3 03 6 1 1 1417

37 3 04 6 1 1 1534

37 5 05 6 1 1 1680

36 5 06 6 1 1 1819

34 6 07 6 1 1 1967

Date Hour Temperature Wind Load

02-08-1998 00 37 3 1168

02-08-1998 01 37 9 1213

02-08-1998 02 37 6 1316

02-08-1998 03 37 3 1417

02-08-1998 04 37 3 1534

02-08-1998 05 37 5 1680

02-08-1998 06 36 5 1819

02-08-1998 07 34 6 1967

Table 1. Data Input Table

Table 2. Data Processing Table

15li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

·Hour-of-day: represents the 24 hours of a day by 0,

1, 2… 23.

·Weekday: represents Sunday, Monday, Tuesday,

Wednesday, Thursday, Friday, and Saturday from 0, 1,

2, 3, 4, 5, and 6 respectively.

·Weekend: represents Monday, Tuesday, Wednesday,

Thursday and Friday as 0; Saturday and Sunday as 1.

·Month-of-year: represents the twelve months in a year

from 0 to 11 respectively.

The Dataset factory class also acts as a preliminary data

filter to eliminate any outliners or bad data that were

present. All inputs to the model linearly scale between 0

and 1, using the minimum and maximum values

corresponding to the input vector.

Implementation of this project is a front end Java and

Back end Oracle server and the authors used Swings to

design the project.

4.1 Factors Affecting Load

The most difficult part of building a good model is to

choose and collect the training and testing input data. A

number of research papers [7][8][9][10][11][12][13] show

that the following factors influence the demand of the

load:

4.1.1 Weather Conditions

This includes temperature, wind velocity, cloud cover,

dew point, rainfall, and snowfall. It has been widely

observed that, in most cases, there is a strong correlation

between weather (especially temperature and wind

velocity) and load demand. In most situations, as

temperature goes down, demand for gas goes up and

vice-versa. However, this relation is highly non-linear. Other

weather effects influence the load to a lesser extent.

4.1.2 Calendar

This includes an hour-of-day, day-of-week, and month-of-

year, weekend and holiday effects. Most gas load

patterns show a very consistent dependence on the

calendar. For example, assuming all other factors

remaining constant, the demand for energy at 1:00 AM

when most people are sleeping is expected to be

different from that at 6:00 AM when most people are

getting up. Similar observations exist for the day-of-week.

Though, it cannot be generalized, the middle days of the

week (Tuesdays, Wednesdays, Thursdays and Fridays)

behave differently from the remaining days. The month-

of-year captures the seasonal effect. Holidays are again

special days; they tend to produce behavior that is more

like a weekend day.

4.1.3 Economic Information

This includes market gas price, the price differential

between gas and oil, and the price differential between

the competitors' price. In many situations, the effect of

economic factors on gas demand is non-trivial. A direct

influence of economic factors on gas demand can be

observed in some instances, such as when the customer

has storage fields for injection or withdrawal. If the market

gas price is low, even if the temperature is high, there can

be a high demand for gas if the customer is injecting gas

into the storage field. Similarly, even if the temperature is

low, if the gas price is high, customers may use the gas in

the storage instead of buying new gas from pipeline

companies, thus decrease the demand for load. The

price differential between gas and oil plays an important

role in the demand, when the customer is a dual fuel use

power plant. Here, depending on the price differential

between gas and oil, the customer can increase or

reduce gas consumption.

The above effects are those, that can be quantified and

hence are possible candidates to be used as inputs for

neural net training and forecasting. There are other

factors, such as contractual obligations that definitely

influence gas demand, and these are too difficult to

quantify and are therefore impossible to include as

influencing variables. In addition, there are a number of

other factors such as maintenance or accidents on

competitors' lines, that influence the demand of gas load,

that at best can only be explained qualitatively.

4.2 The Load Forecast Model

4.2.1 Input Data

The input data used in this model came from one of the

author's clients, a pipeline company. They stored all of

their historical data in different tables in an Oracle

16 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

 RESEARCH PAPERS

database – weather information in one table, and hourly

load history in another table. The authors retrieved these

data and stored them as a text.

4.2.2 Network Architecture

The network consists of one input layer, one output layer

and one hidden layer. Obviously, there is only one output

unit – the load. The number of input units is also fixed,

depending on how many factors are included in the

model, and how the factors are encoded. The number of

hidden units are need to be decided by training with

some test sets. Figure 11 is the architecture of the load

forecast model including all of the six effects that is

mentioned before.

The network requires enough hidden units to learn the

general features of the relationship. With too many hidden

units, it will cause over fitting while too few will lead to under

fitting. The goal is to use as few units in the hidden layer as

possible, while still retaining the network's ability to learn

the relationships among the data. As mentioned earlier,

including more than a single middle layer does not

significantly improve the accuracy of the predictions.

The activation functions of the hidden units are sigmoid

functions, while the output activation function can be

either a sigmoid function or a linear function, which can

be selected by the users.

4.3 Implementation of the Back-Propagation Algorithm

The network is trained using the back-propagation

algorithm. The standard sum-of-squares error function is

used.

(26)

Here is the Java code for the error function, which is one of

the methods within the Neural Network class:

public double errorFunction (double[] x, double[] y) {

double sum = 0.0;

for (int i=0; i<x.length; i++) sum += (x[i] - y[i])*(x[i] - y[i]);

return 0.5 * sum;

 }

As mentioned above, the activation function for the

hidden units is the sigmoid function:

(27)

This function has a very useful feature – its derivative can

be expressed in the following form:

(28)

The above two equations can be easily coded:

public double sigmoid(double x) {

 if (x > 50.) return 1.0;

 if (x < -50.) return 0.0;

 return 1.0 /(1.0+Math.exp(-x));

 }

 public double sigmoidDerivative(double x) {

 return x*(1.0-x);

 }

The first step for the back-propagation is forward

propagation

 void feedForward() {

//For hidden units

for (int i = 0; i<numberOfHiddenUnit; I++) {

 double sum = 0.0;

 for (int j=0; j<numberOfInputUnit+1; j++) {

 if (j==numberOfInputUnit)

 sum += weightLayer1[j][i]; // Include the Bias term

 else sum += weightLayer1[j][i]*inputs[j];

 }

 hiddens[i] = sigmoid(sum);

 }

//For output units

 for (int i = 0; I < number of Output Unit; I++) {

 double sum =0.0;

å
=

-=
n

k

kytE k

1

2)(
2

1

Figure 11. Load Forecast Model

h n

…

h 0

In p u t L a ye r H id d e n L a y e r Ou tp u t L a y e r

bia s

bia s

H o ur-o f-da y

W e e k da y

W e e k e nd

M on th-o f-y e ar

W i nd

t e m pe r atu re

h 1

L o ad Val ue

xe
xg

-+
=

1

1
)(

))(1)(()(xgxgxg -=¢

17li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

 for (int j=0; j < number of Hidden Unit; j++) {

 sum += weightLayer2[j][i]*hiddens[j];

 }

 outputs[i] = sigmoid(sum);

 }

 }

The second step is error Back-propagation. Using the

expression derived from equations (20) and (23), the

following results are obtained. For the output units, the δ's

are given by,

(29)

while, for units in the hidden layer, the δ's are found using,

(30)

Derivatives with respect to the first layer and second layer

weights are then given by,

and (31)

Gradient descent algorithm is used with momentum

equation (25) to update the weights:

void back propagation (double rate, double alpha) {

 double[] delta1 = new double [number of

HiddenUnit];

 double[] delta2 = new double[numberofOutputUnit];

 //Delta for second layer

 for (int j=0; j<numberOfOutputUnit; j++) {

 delta2[j] = targets[j] - outputs[j];

 }

 //Delta for first layer

 for (int j=0; j<numberOfHiddenUnit; j++) {

 double sum = 0.0;

 for (int k=0; k<numberOfOutputUnit; k++) {

 double term = delta2[k] * weightLayer2[j][k];

 if (outputActivationType==1) term

*=sigmoidDerivative(outputs[k]);

 sum += term;

 }

 delta1[j] = sum;

 }

//Update the second layer weights

for (int i=0; i<numberOfHiddenUnit; I++) {

 for (int j=0; j<numberOfOutputUnit; j++) {

 double delta = delta2[j]*hiddens[i];

 if (outputActivationType==1) delta *=

sigmoidDerivative(outputs[j]);

 double weightChange = rate * delta

+alpha*momentum2[i][j];

 weightLayer2[i][j] += weightChange;

 momentum2[i][j] = weightChange;

 }

 }

 //Update the first layer weights

 for (int i=0; i<numberOfInputUnit+1; I++) {

 for (int j=0; j<numberOfHiddenUnit; j++) {

 if (i!=numberOfInputUnit && inputs[i]==0) {

 momentum1[i][j] = 0.;

 }

 else {

 double delta = delta1[j]*sigmoidDerivative(hiddens[j]);

 if (i!=numberOfInputUnit) delta *= inputs[i];

 double weightChange = rate * delta

+alpha*momentum1[i][j];

 weightLayer1[i][j] += weightChange;

 momentum1[i][j] = weightChange;

 }

 }

 }

 }

Batch learning method was adopted to train the networks.

4.4 Network Generalization

The Split-sample (or hold-out validation) method [5] is

used to estimate generalization error. With this method,

part of the data are reserved as a test set that will not be

used in the training. After training, run the network on the

test set. The error on the test set provides us an unbiased

estimate of the generalization error, with which, the

å
=

-=
c

k

kkjjjj wzz
1

)1(dd

kkk ty -=d

ij

ji

x
w

E
d=

¶

¶
jk

kj

z
w

E
d=

¶

¶

18 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

 RESEARCH PAPERS

authors can decide whether the model is sufficiently

general.

4.5 Features of the System

The Tell Future load forecast system has several useful

features:

·It checks the importance of each effect.

·It helps find the optimal number of hidden units.

·It checks the influence of the learning rate and

momentum.

·It displays the training and forecasting result in

graphics and tabular form.

·It displays training errors.

5. Results

5.1 Home Page

Figure 12 describes the Home Page for the Load

forecaster system.

5.2 Effects Setup

Figure 13 describes the effects setup with Temperature,

Wind Velocity, Hour-of-day, Weekday, weekend, and

Month of year. Here all the effects are selected.

5.3 Network Setup

Figure 14 describes the Network setup, where the authors

provide the input as Hidden Units, Learning rate, Alpha,

Epochs and then they select linear and click ok.

5.4 Training Results

Figure 15 describes about the Training result on a graphic

Figure 12. Tell Future Forecast System Main Screen

Figure 13. Effects Setup

Figure 14. Network Setup

Figure 15. Training Results-Graphic Display

Figure 16. Training Results in Tabular Display

19li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

display for the given input. Here the Tabular View button is

clicked.

5.5 Training Results in a Tabular Display

Figure 16 displays the Training results in a tabular form for

the given input.

5.6 Load Forecast Graphic Display

Figure 17 displays the Load forecast graphic for the given

input by the user. Here the Tabular View button is clicked in

order to display the results in the form of table.

5.7 Average Squared Error vs Hidden Units

Figure 18 displays the graph for Average squared error vs.

hidden units.

5.8 Training Epochs vs Learning Rate Momentum

Table 3 shows the epochs that the training processes

taken to meet the error tolerants (average square error is

0.0005) or reach the epoch limit (9999) with different

Figure 17. Load Forecast-Graphic Display

Figure 18. Average Squared Error vs Hidden Units

0 0.1 0.2 0.4 0.6

1 1493 1867 1933 3030 4806

2 2014 1233 1207 2683 4728

3 961 1649 3260 3898 5547

4 2099 1642 2127 4230 2841

5 1538 3158 2061 1967 9999

6 2789 1834 3498 1804 9999

7 1135 1650 1215 5708 2091

8 2271 4508 1668 8503 9999

9 1257 1936 2127 3454 3238

10 4696 1253 1267 1625 9999

Average 2025 1728 2036 3690 6325

1 2914 2813 4211 3421 9999

2 3469 1106 2496 1701 4419

3 1108 1770 2472 1898 9999

4 2179 3019 1448 2568 9999

5 1957 1468 2045 1567 9999

6 1354 2086 961 2101 5333

7 887 1796 2393 3286 9999

8 2315 1442 1027 1268 1496

9 1058 2143 1462 3698 3109

10 1838 1626 1248 1324 3504

Average 1908 1927 1976 2283 6786

1 1414 1689 2027 2022 1888

2 4411 916 2374 6034 3147

3 1600 1010 1960 1271 3100

4 1532 1093 3634 1952 2992

5 1237 1519 1603 1775 1782

6 1011 1037 1448 3415 3256

7 2622 1829 7767 1096 1002

8 1509 1073 1293 1058 7131

9 1565 2288 879 3006 2614

10 1425 1141 2590 3372 2193

Average 1833 1360 2558 2500 2911

1.0

Learning Rate Test

0.8

Momentum

1.2

1 1493 1129 1000 630 3945
2 5471 2582 845 1981 2091
3 5461 1031 3003 1226 767

4 1972 2734 2952 640 913
5 2364 1796 1119 2405 1358
6 1943 870 7932 1377 1099
7 2088 5425 999 2209 953
8 1753 2490 3348 3547 1517

9 1887 2077 5242 1040 2705
10 2728 2753 2968 2395 2205

Average 2716 2289 2941 1745 1755

1 3861 2272 5690 1467 962

2 5253 6670 1925 5917 1671
3 2622 1506 1324 1302 765
4 1762 5158 1489 2203 3333
5 1554 3009 1138 1620 1370

6 1722 1727 3962 1084 1340
7 2507 6240 1948 1253 1351
8 2222 4112 2035 814 3877
9 1966 2170 1761 2560 2094

10 2367 955 1667 1794 1207
Average 2584 3382 2294 2001 1797

1 9999 2684 3611 4148 2639
2 4065 4114 4564 2219 1441
3 4187 3325 2874 3783 2594

4 4821 4627 8726 5053 2388
5 2713 2401 2090 1718 2297
6 7866 3322 4891 7496 2481
7 3908 8884 9999 6844 2681

8 1619 1767 3095 3529 2623
9 4740 6457 2221 2218 2282

10 9999 3613 1483 1907 1563
Average 5392 4119 4355 3892 2299

0.6

0.4

0.2

Table 3. Training Epochs vs Learning Rate Momentum

20 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

 RESEARCH PAPERS

values of learning rate and momentum, where each pair

had 10 tests. It is easy to see that too large and too small

learning rates converge slowly, while high momentum

helps small learning rate to converge faster. The best

learning rate and momentum term are 0.8 and 0.1

respectively for this model. There are no big differences

between using a sigmoid activation function and a linear

activation function for the output unit.

Conclusion

Neural networks can learn to approximate any function

and behave like associative memories by using just an

example data that is representative of the desired task.

They are model free estimates and are capable of solving

complex problems based on the presentation of a large

number of training data. This gives them a key advantage

over traditional approaches to function the estimation

such as the statistical methods. Neural networks estimate

a function without a mathematical description of how the

outputs functionally depend on the inputs - they represent

a good approach that is potentially robust and fault

tolerant.

In this paper, the authors have examined the properties of

the feed-forward neural networks and the process of

determining the appropriate network inputs and

architecture, and built up a short-term gas load forecast

system - the Tell Future system. This system performs very

well for short-term gas load forecasting. The forecast

accuracy has been in excess of 90%.

In order to forecast the future load from the trained

networks, the authors need to use the history loads,

temperature, wind velocity, and calendar information in

addition to the predicted future temperature and wind

velocity. Compared to other regression methods, the

neural networks allow more flexible relationships between

temperature, wind, calendar information and load

pattern. It has also been shown by other researchers that

multi-layer feed-forward neural network performs best for

short-term load forecasting [7],[14].

The authors have utilized only temperature, wind and

calendar information, since they are the only information

available to us. Use of additional variables such as cloud

coverage and economic information should yield better

results [7]. Since, the neural networks simply interpolate

between the training data, it will give high errors with the

test data that is not close enough to any training data.

Feed-forward neural networks can be used in many kinds

of forecasting in different industrial areas. Similar models

can be built to make electric load forecasting, daily water

consumption forecasting, stock and markets forecasting,

traffic flow and product sales forecasting [15],[16] as long

as correct relationships between the inputs and the

outputs can be captured and put in to the models. But

there is no universal network paradigm suitable for all kinds

of forecasting problems. For each problem, a detailed

analysis of the domain data and the acquisition of prior

knowledge are necessary to find a suitable model. The

introduction of prior knowledge in input selection, input

encoding, or architecture determination is often very

useful, especially when the available domain data are

limited.

The standard Back-propagation algorithm for training

feed-forward neural networks have proven robust even for

difficult problems. However, its high performance results

are attained at the expense of a long training time to

adjust the network parameters, which can be

discouraging in many real-world applications. Even on

relatively simple problems, it often requires a lengthy

training process in which, the complete set of training

examples is processed hundreds or thousands of time.

Thus, some accelerating techniques or advanced

training algorithms can be applied to improve the

performance of the networks.

References

[1]. L. Fausett, (1994). Fundamentals of Neural Networks:

Architectures, Algorithms, and Applications. Prentice-

Hall, Inc.

[2]. W.S. Sarles, (1997). “Neural Network FAQ”, Retrived

from: ftp://ftp.sas.com/pub/neural/FAQ.html

[3]. R.D. Reed and Robert J. Mark, (1999). Neural

Smithing: Supervised Learning in Feedforward Artificial

Neural Networks. The MIT Press.

[4]. C.M. Bishop, (1995). Neural Networks for Pattern

21li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

Recognition. Oxford University Press.

[5]. B.D. Ripley, (1996). Pattern Recognition and Neural

Networks. Cambridge University Press.

[6]. Rumelhart, D.E., Hinton, G.E., and Williams, R.J.,

(1986). “Learning Internal Representations by Error

Propagation”. ACM Digital Library, Vol. 323, pp.533-536.

[7]. W. P. Wagner, (1995). “Daily Peak Load Electricity

Forecasting using Artificial Neural Networks”. Retrived

from: http://hsb.baylor.edu/ramsower/acis/papers/

wagnerw. htm.

[8]. A. Khotanzad. M. H. Davis, A. Abaye, and D. J.

Maratukulam, (1996). “An Artificial Neural Network Hourly

Temperature Forecaster with Application in Load

Forecasting”. IEEE Transaction on Power Systems, Vol.11,

pp.870-876.

[9]. S. T. Chen, D. C. Yu, and A. R. Moghaddamjo, (1992).

“Weather Sensitive Short-Term Load Forecasting using

Nonfully Connected Artificial Neural Network”. IEEE

Transaction on Power Systems, Vol.7, pp.1098-1104.

[10]. A.G. Baklrtzls, V. Petrldls, and S. J. Klartzls, (1995). “A

Neural Network Short Term Load Forecasting Model for the

Greek Power System”. IEEE Transaction on Power Systems,

Vol. 11, pp.858-862.

[11]. Peng, T.M., Hubele, N.F., and Karady, (1993). “An

Adaptive Neural Network Approach to One-Week Ahead

Load Forecasting”. IEEE Transactions on Power Systems,

Vol.8, pp.1195-2003.

[12]. J. Angstenberger, (1996). Neural Networks and their

Applications, John Wiley & Sons.

[13]. X. Ding, and S. Canu, (1996). “Neural Network Based

M o d e l f o r F o r e c a s t i n g ” . R e t r i v e d f r o m :

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.49.5576&rep=rep1&type=pdf

[14]. H. C. A. M. Withagen, (1997). Neural Networks:

Analog VLSI Implementation and Learning Algorithms.

Technische Universiteit, Eindhoven.

[15]. T. Masters, (1995). Advanced Algorithms for Neural

Networks: a C++ Sourcebook. John Wiley & Sons, Inc.

[16]. T. Masters, (1995). Neural, Novel & Hybrid Algorithms

for Time Series Prediction. John Wiley & Sons, Inc.

[17]. Amrender Kumar, (2014). “Artificial Neural Network”:

Retrived from: http://www.iasri.res.in/ebook/fet/Chap%

2014_Artificia%20Neural%20Networks_Amrender.pdf

[18]. Gurvinder Singh, (2009). Quantum Neural Netework

Application for Weather Forecasting. Thesis.

ABOUT THE AUTHORS

K. Sunil Manohar Reddy is currently working as an Assistant Professor in the Department of Computer Science and Engineering at
Matrusri Engineering College, Hyderabad, India. His areas of interest are Neural Networks, Artificial Intellegence, Software
Engineering, Data Warehousing and Data Mining. He has presented and published various papers in National and International
Conferences and Journals.

Dr. G. Ravindra Babu is currently working as a Professor in the Department of Computer Science and Engineering at Trinity
College of Engineering & Technology, Karimnagar, India. His areas of interest are Neural Networks, Artificial Intellegence, and
Computer Networks. He has presented and published around 45 papers in National and International Conferences and
Journals.

Dr. S. Krishna Mohan Rao is currently working as a Professor in the Department of Computer Science and Engineering at
Siddhartha Institute of Engineering & Technology, Hyderabad, India. His areas of interest are Artificial Intellegence, Neural
Networks, and Databases. He has presented and published around 39 papers in National and International Conferences and
Journals.

22 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

