
Lecturer, Department of Statistics & Computer Science, University of Peradeniya, Sri Lanka.

ABSTRACT

Round Robin (RR) scheduling algorithm is a widely used scheduling algorithm in timesharing systems, as it is fair to all

processes and is free of starvation. The performance of the Round Robin algorithm depends very much on the size of the

time quantum selected. If the time quantum is too large, the performance of the algorithm would be similar to that of

FCFS (First Come First Serve) scheduling. On the other hand, if the time quantum is too small, the number of context

switches will be large. Therefore, it is necessary to have some idea about the optimum level of time quantum, so that the

average waiting time and turnaround times, and the number of context switches are not too large. Several extensions to

the round robin algorithm have been proposed in the literature to overcome these difficulties. In this study, the author has

picked some of these extensions and tried comparing their effectiveness by means of some examples.

Keywords: Scheduling, Round Robin, Algorithms, Time Quantum, Burst Time.

RUWANTHINI SIYAMBALAPITIYA

By

EXTENSIONS TO ROUND ROBIN SCHEDULING:
COMPARISON OF ALGORITHMS

1li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

INTRODUCTION

Round Robin (RR) is a scheduling algorithm designed

especially for time sharing systems. It is somewhat similar

to FCFS scheduling. The difference is that in RR,

preemption of processes is allowed while there is no

preemption in FCFS scheduling. When preemption of

processes is allowed, a process is interrupted before

completion, and the balance part is implemented in later

stages. The idea is to give a fair share of processing to

each available process.

In RR scheduling, a small time unit, known as a time

quantum is defined, which is considered as the time limit

allowed for each process at a time. The ready queue of

processes is considered as a circular queue. Once a

process spent its time quantum, it is preempted, which

means that the process is interrupted and the remaining

part is moved to the end of the queue using a context

switch. Then, the next process takes over. This procedure

continues until all the processes are completed. However,

when a process completes its execution before its

allocated time quantum is over, the next process in the

ready queue continues execution.

Even though this idea may be attractive and looks fair for

all the processes, it has its drawbacks as well. In fact, the

performance of the RR algorithm depends very much on

the size of the time quantum selected. If the time

quantum is too large, the performance of the algorithm

would be similar to that of FCFS scheduling. On the other

hand, if the time quantum is too small, the number of

context switches will be large. Therefore, it is necessary to

have some idea about the optimum level of time

quantum so that, the number of context switches would

be limited and at the same time, average waiting time

and turnaround times are not too large. Waiting time is the

amount of time, a process spends waiting in the ready

queue. The interval from the time of submission of a

process at the time of completion is the turnaround time.

The paper is organized as follows : In section 1, the author

presents some related work which extends the Round Robin

scheduling concept. In section 2, the author discuss the

computational experience by illustrating the detailed

calculations. The author compares the performance of the

algorithms in section 3, and the last section concludes the

paper.

1. Related Work

A number of algorithms has been proposed to improve

 RESEARCH PAPERS

2 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

the outcome of the Round Robin scheduling. It is assumed

that, the burst time of each process in the queue is

known. Burst time is the actual time that is required to

complete execution of a particular process or task in the

computer. Instead of the static time quantum, a

dynamic time quantum has been proposed by some of

these approaches. However, in most of these, only

examples of small sizes have been used to illustrate

these procedures. The other problem is that, in most of

these approaches, sorting the burst times of the given

processes is required before hand, which might affect

the speed of computation when a large number of

processes are present in a given list. Therefore, the

validity of these claims could not be verified for larger

size problems as theoretical proofs have not been

provided.

Here, a summary of each algorithm has been presented

that the author has compared in this study. Certain

algorithms were not mentioned as they give rise to very

similar results.

·Round Robin Algorithm: The author has considered

the Round Robin algorithm as the basis for comparing

the performance of the other algorithms in this study.

·Ahad (2012) has observed that in many cases, jobs

are preempted even if a negligible amount of

execution time is left for a job. Therefore, a process by

which the time quantum should be modified has

been proposed. The time quantum of a process is

modified based on some threshold value, which is

calculated by taking average of the left out time of all

processes in its last turn.

·Barman (2013) has proposed an algorithm (DTQRR -

Dynamic Time in Round Robin Algorithm) in which, if

arrival time of all the processes is zero, the time

quantum is set to be the average of burst times of all

the processes. If arrival time is not zero, the time

quantum is changed dynamically depending upon

arrival time and burst time of the processes.

·Behera et. al. (2011) have proposed a method

(MTDQRR - Multi Dynamic Time Quantum Round Robin

Algorithm), where the time quantum is calculated

twice in a single round robin cycle. First, median of the

burst times is taken as the time quantum up to the

process considered as the median. For the

succeeding processes, the time quantum is

determined by taking the burst time of Upper Quartile

of all processes. This whole operation occurs in a

single scheduling cycle of the processes sorted in

ascending order of the burst time of all the processes.

·In the algorithm proposed by Matanech (2009), the

time quantum is repeatedly adjusted according to

the burst time of the currently running processes. The

time quantum is made equal to the median of the

burst times of the remaining processes. If the median

is less than 25, it will be made equal to 25.

·Negi (2013): In this paper, some minor changes to the

conventional Round Robin algorithm, so that, the time

quantum of those processes is increased to some

extent whose remaining time in its last turn is less than or

equal to an assigned threshold value. In this approach,

this threshold value is assumed to be one fourth of the

time quantum. If the remaining time of a process in its

last turn is found out to be less than this threshold value,

then the process is not preempted in its second last

turn unless it completely finished its entire remaining

execution time.

·Noon et al. (2011) demonstrated that this algorithm

uses the idea of the dynamic time quantum. Initially, the

time quantum is considered as the burst time of the first

process in the queue. Then the time quantum is taken to

be the average of the remaining burst times of the

processes waiting in the queue.

· In the algorithm proposed by Rao et al., (2015) time

slices of only those processes which require a slightly

greater time slice than the allotted time cycles are

only modified. If the remaining burst time is less than or

equal to the one time slice, then execute the same

process otherwise go for the next process.

·Vijaya Lakshmi (2015) has proposed an algorithm

which arranges the processes in an ascending order

of the burst times. Time quantum is calculated by

multiplying the median of burst times by the

 RESEARCH PAPERS

3

difference between maximum and minimum values

of burst times and then dividing by the average of the

burst times.

In addition, several other algorithms have also been

proposed to solve this problem.

An algorithm presented by Kundargi and Emmi (2014)

attempts to improve the disadvantage of Round Robin

algorithm by using a dynamic time quantum.

Jaiswal et al. (2013) have proposed an approach on a

dynamic time quantum, which is repeatedly changed to

the immediate greater value of the previous time

quantum.

Mishra and Rashid (2014) has presented an algorithm in

which the dynamic time quantum is repeatedly adjusted

to the minimum value of retaining burst time.

Datta et.al. (2015) have proposed an algorithm based on

Round Robin and the shortest job first scheduling.

Khankasikam (2013) has proposed an algorithm in which

the time quantum is repeatedly adjusted according to

the burst time of the running processes.

Helmy and Dekdouk (2007) has proposed an algorithm

based on a weighting technique as an attempt to

combine the low scheduling overhead of round robin

algorithms and favor short jobs.

2. Computational Experience

Most of the papers mentioned above have illustrated their

algorithms using small size examples such as problems

with only five processes. Therefore, the author has

randomly generated problems containing more

processes (eg. using 7 and 12 processes) in order to study

the behavior of these algorithms. The programs for the

basic Round Robin algorithm and the eight extensions of

the algorithm were tested using the same set of examples.

The programs were implemented with a simulator

constructed using a Pascal compiler.

The detailed computational steps are presented with

respect to all the algorithms considered using the

problem with 7 processes as given below. A summary of

results for a 12 process problem is also presented in the

next section.

Example 1:

Problem with 7 processes

Burst time: 30, 15, 45, 85, 20, 32, 18

Total burst time = 245

Average burst time = 245/7 = 35

2.1 Round Robin Algorithm

An arbitrary time quantum of 30 has been used in the

round robin algorithm. Implementation of Round Robin

algorithm is shown in Table 1.

Total turnaround time = 30+45+ 188 + 245 + 125 + 220

+ 173 = 1026

Average turnaround time = 1026/7 = 146.6

Total waiting time = 1026 – 245 = 781

Average waiting time = 781/7 = 111.6

Context switches = 10

2.2 Improved RR Algorithm

An arbitrary time quantum of 30 has been used for the

improved RR algorithm (Ahad, 2012). A threshold value k is

added to the time quantum whenever it is possible to

finish a process without preemption. K is the ceiling (x),

where x is the average left out time of uncompleted

processes. Left out time is the remainder, when the burst

time of each process is divided by the time quantum

where the burst time is greater than the time quantum,

Therefore, the left out times for the given processes are 0,

0, 15, 25, 0, 2, 0.

Table 1. Implementation of Round Robin Algorithm
(Time Quantum = 30)

Process 1 2 3 4 5 6 7 3 4 6 4

Burst-time 30 15 45 85 20 32 18 15 55 2 25

Run-time 30 15 30 30 20 30 18 15 30 2 25

Cycle 1 1 1 1 1 1 1 2 2 2 3

Context switch - 1 2 3 4 5 6 7 8 9 10

Time-spent 30 45 75 105 125 155 173 188 218 220 245

Completed Y Y N N Y N Y Y N Y Y

Process 1 2 3 4 5 6 7 3 4 4

Burst-time 30 15 45 85 20 32 18 15 55 25

Run-time 30 15 30 30 20 32 18 15 30 25

Cycle 1 1 1 1 1 1 1 2 2 3

Context switch - 1 2 3 4 5 6 7 8 -

Time-spent 30 45 75 105 125 157 175 190 220 245

Completed Y Y N N Y Y Y Y N Y

Table 2. Implementation of Improved RR
Algorithm (Time Quantum = 30, k = 6)

li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

 RESEARCH PAPERS

4

Hence, k = ceiling (15+25+2/7) = ceiling (42/7) = ceiling

(6) = 6

Therefore, even though the time quantum is 30, whenever

it is possible to complete a process, a time quantum of 36

could be used. Table 2 shows the implementation of

improved RR algorithm.

Total turnaround time = 30+45+190+245 +125+157+

175 = 967

Average turnaround time = 967/7 = 138.1

Total waiting time = 967 – 245 = 722

Average waiting time = 722/7 = 103.1

Context switches = 8

2.3 DTQRR Algorithm

Time quantum = average of burst times of all processes

= 245/7 = 35

Implementation of DTQRR algorithm is shown in Table 3

(Barman, 2013).

Total turnaround time = 30+45+195+245+135+167+

185 = 1002

Average turnaround time = 1002/7 = 143.1

Total waiting time = 1002 – 245 = 757

Average waiting time = 757/7 = 108.1

Context switches = 8

2.4 MTDQRR Algorithm

Two time quanta are used according to this algorithm.

First, the processes are arranged according to the

ascending order of burst times. Accordingly, the median

of burst times is 30, which is the fourth burst time in the

ascending order. This time quantum is used up to the

fourth burst time in the list. The time quantum taken for the

remaining processes from the next process in the queue is

the upper quartile, which is 45 (Behera 2011).

Implementation of MTDQRR algorithm is shown in Table 4.

Total turnaround time =15+33+53+83+115+160+245

= 704

Average turnaround time = 704/7 = 100.6

Total waiting time = 704 – 245 = 459

Average waiting time = 459/7 = 65.6

Context switches = 6

2.5 Self Adjustment RR (SARR) Algorithm

In this algorithm, the median of remaining burst times are

adjusted repeatedly. Here, the time quantum is dynamic

and taken as the median burst time. However, if the

median is less than 25, it is taken equal to 25. Initially, the

time quantum is set at 30, which is the median of burst

times of the processes in the queue. After the first cycle,

processes 6, 3 , and 4 still remain to be completed. The

median for these processes is 15, which is less than 25.

Therefore, according to the algorithm, time quantum is

taken as 25 for the remaining processes. After that, only

the process 4 goes to the third cycle (Matanech 2009).

Table 5 shows the SARR algorithm implementation.

Total turnaround time =15+33+53+83+175+190+245

= 794

Table 3. Implementation of AlgorithmDTQRR

Table 4. Implementation of MTDQRR Algorithm

Process 1 2 3 4 5 6 7 3 4 4

Burst-time 30 15 45 85 20 32 18 10 50 15

Run-time 30 15 35 35 20 32 18 10 35 15

Cycle 1 1 1 1 1 1 1 2 2 3

Context switch
-

1 2 3 4 5 6 7 8 -

Time-spent 30 45 80 115 135 167 185 195 230 245

Completed Y Y N N Y Y Y Y N Y

Process 2 7 5 1 6 3 4 4
Burst-time 15 18 20 30 32 45 85 40

Run-time 15 18 20 30 32 45 45 40

Cycle 1 1 1 1 1 1 1 2

Context switch - 1 2 3 4 5 6 -

Time-spent 15 33 53 83 115 160 205 245
Completed Y Y Y Y Y Y N Y

Table 5. Implementation of SARR Algorithm

Table 6. Implementation of Conventional RR Algorithm

Process 2 7 5 1 6 3 4 6 3 4 4

Burst-time 15 18 20 30 32 45 85 2 15 55 30

Run-time 15 18 20 30 30 30 30 2 15 25 30

Cycle 1 1 1 1 1 1 1 2 2 2 3

Context switch - 1 2 3 4 5 6 7 8 9 -

Time-spent 15 33 53 83 113 143 173 175 190 215 245

Completed Y Y Y Y N N N Y Y N Y

Process 1 2 3 4 5 6 7 3 4 4

Burst-time 30 15 45 85 20 32 18 15 55 25

Run-time 30 15 30 30 20 32 18 15 30 25

Cycle 1 1 1 1 1 1 1 2 2 3

Context switch - 1 2 3 4 5 6 7 8 -

Time-spent 30 45 75 105 125 157 175 190 220 245

Completed Y Y N N Y Y Y Y N Y

i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

5

 RESEARCH PAPERS

Average turnaround time = 794/7 = 113.4

Total waiting time = 794 – 245 = 549

Average waiting time = 549/7 = 78.4

Context switches = 9

2.6 Conventional RR (CRR) Algorithm

An arbitrary time quantum of 30 is used in this example. A

threshold value is equal to one-fourth of the time

quantum, which is equal to 8 is considered here. This

threshold value is added to the time quantum, whenever

it is possible to complete a particular process without

preemption (Negi 2013). CRR algorithm is shown in Table 6.

Total turnaround time = 30+45+190+245+125+157+

175 = 967

Average turnaround time = 967/7 = 138.1

Total waiting time = 967 – 245 = 722

Average waiting time = 722/7 = 103.1

Context switches = 8

2.7 AN Algorithm

Initially, the time quantum is taken as the burst time of the

first process in the queue. Afterwards, the time quantum is

modified and taken as the average of remaining burst

times in the queue. Hence, the initial time quantum is 30.

Subsequent time quanta are 24 and 31 (Noon 2011).

Implementation of AN algorithm is shown in Table 7.

Total turnaround time = 30+45+188+245+125+214+

173= 1020

Average turnaround time = 1020/7 = 145.7

Total waiting time = 1020 – 245 = 775

Average waiting time = 775/7 = 110.7

Context switches = 10

2.8 Improved Conventional RR (CRR) Algorithm

Initially, the time quantum is taken as the floor (x), where x

is the average of the burst times of the processes in the

queue which is 35 in this example. Processes with burst

times less than or equal to the time quantum are

executed according to the basic round robin algorithm.

Then, the processes with burst times exceeding the time

quantum are arranged according to the remaining burst

times and the number of cycles and allocate CPU. If the

remaining burst time of current process is less than one

time quantum, allocate CPU again to the current process.

Otherwise, go to the next process (Rao 2015). Table 8

shows the Implementation of CRR algorithm.

Total turnaround time = 30+45+65+97+115+160+245

= 757

Average turnaround time = 757/7 = 108.1

Total waiting time = 757 – 245 = 512

Average waiting time = 512/7 = 73.1

Context switches = 6

2.9 RR Scheduling Algorithm

In this algorithm, Vijaya Lakshmi (2015) calculated the

Table 7. implementation of AN Algorithm

Table 8. implementation of Improved CRR Algorithm

Process 1 2 3 4 5 6 7 3 4 6 4

Burst-time 30 15 45 85 20 32 18 15 55 2 31

Run-time 30 15 30 30 20 30 18 15 24 2 31

Cycle 1 1 1 1 1 1 1 2 2 2 3

Context switch
-

1 2 3 4 5 6 7 8 9 10

Time-spent 30 45 75 105 125 155 173 188 212 214 245

Completed Y Y N N Y N Y Y N Y Y

Process 1 2 5 6 7 3 4 4

Burst-time 30 15 20 32 18 45 85 50

Run-time 30 15 20 32 18 45 35 50

Cycle 1 1 1 1 1 1 1 2

Context switch - 1 2 3 4 5 6 -

Time-spent 30 45 65 97 115 160 195 245

Completed Y Y Y Y Y Y N Y

Table 9. Implementation of RR Scheduling Algorithm

Process 2 7 5 1 6 3 4 4
Burst-time 15 18 20 30 32 45 85 25

Run-time 15 18 20 30 32 45 60 25
Cycle 1 1 1 1 1 1 1 2

Context switches - 1 2 3 4 5 6 -
Time-spent 15 33 53 83 115 160 220 245
Completed Y Y Y Y Y Y N Y

Table 10. Comparison of Algorithms for
Example Problem with 7 Processes

Algorithm Average
Turnaround Time

Average
Waiting Time

Context
Switches

RR (TQ=30) 146.6 111.6 10

138.1 103.1 8

143.1 108.1 8

100.6 65.6 6

113.4 78.4 9

138.1 103.1 8

145.7 110.71 10

108.1 73.1 6

100.6 65.6 6

Improved RR

DTQRRD

MTQRR

SARR

CRR

AN

Improved CRR

RR Scheduling

li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

6

 RESEARCH PAPERS

time quantum as follows (Table 9).

Time quantum = (max. burst time-min. burst time)x

median/average burst time.

= (85-15) x 30/35 = 60

Total turnaround time = 15+33+53+83+115+160+

245= 704

Average turnaround time = 704/7 = 100.6

Total waiting time = 704 – 245 = 459

Average waiting time = 459/7 = 65.6

Context switches = 6.

3. Comparison of Results

The author has compared the performance of the above

algorithms based on the standard criteria: average turn

around time, average waiting time and the number of

context switches. In order to compare them, the author

has used two numerical examples, one containing 7

processes and another problem with 12 processes.

Results are presented in Tables 10 and 11. RR indicate the

results obtained for the standard Round Robin algorithm.

Example 1: problem with 7 processes

Burst times: 30, 15, 45, 85, 20, 32, 18

Example 2: problem with 12 processes.

Burst times:15,40,18,25,68, 30,22, 42,10,16,35,39

From the above results, it can be seen that, out of the eight

algorithms compared with the Round Robin algorithm,

results obtained from the four algorithms appeared to be

superior than those of the others. These are the algorithms

proposed by Behera (2011), Matanech (2009), Rao et. al.

(2015), and Vijaya Lakshmi (2015). Algorithms proposed

by Negi (2013), Ahad (2012), Barman (2013), and Noon

(2011) are placed lower down the order according to the

results obtained from the example problems. However, it is

not possible to rank them according to the superiority

without considering further examples.

An advantage of the algorithm proposed by Behera et.

al. (2011) was that, the time quantum is calculated twice

in a single Round Robin cycle. First, the median of the burst

time is taken as the time quantum up to the process

considered as the median. For the succeeding

processes, the time quantum is determined by taking the

burst time of Upper Quartile of all the processes. This helps

to reduce the overall processing time.

In the algorithm proposed by Mataneh (2009), the

median of remaining burst time is adjusted repeatedly.

This can be considered as a strength of this algorithm.

Here, the time quantum is dynamic and is taken as the

median burst time.

The benefit of the algorithm proposed by Rao et. al. (2015)

is that, time slices of only those processes which require a

slightly greater time slice than the allotted time cycles are

only modified.

A strength of the algorithm presented by Vijaya Lakshmi

(2015), is that a formula has been used to determine the

time quantum. It attempts to define the finest time

quantum using a formula which incorporate maximum,

minimum and median burst times.

An advantage of the conventional RR (Negi 2013)

algorithm is that, a threshold value is added to the time

quantum, whenever it is possible to complete a particular

process without preemption. However, a drawback of this

algorithm is that, an arbitrary time quantum has to be

used in solving a given problem.

A special feature of the improved RR (Ahad 2012)

algorithm is that, the processes waiting in the ready queue

are divided into two categories. The processes in the first

category are the one for which the time quantum is

modified and the processes in the second category will

be processed as per the classical Round Robin algorithm.

This algorithm also suffers from the necessity to use an

arbitrary time quantum.

Table 11. Comparison of Algorithm for
Example Problem with 12 Processes

22

18

17

13

17

18

22

11

11

Algorithm Average
Turnaround Time

Average
Waiting Time

Context
Switches

RR (TQ=20) 233 203

Improved RR 205.6 175.6

DTQRRD 217.4 187.4

MTQRR 200.1 170.1

SARR 180.5 150.5

CRR 205.6 175.6

AN 224.8 194.8

Improved CRR 153.6 123.6

RR Scheduling 145.1 115.1

i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

7

 RESEARCH PAPERS

Noon et al. (2011) proposed an algorithm in which, initially,

the time quantum is taken as the burst time of the first

process in the queue. However, no justification was made

for this selection: whether this approach would improve

the performance of the algorithm.

The time quantum is set to be the average of burst time of all

the processes in the algorithm proposed by Barman (2013).

However, it was not mentioned whether this method would

improve the performance of the algorithm.

Conclusion

In the absence of any theoretical results to establish the

superiority of a particular algorithm, it is difficult to

generalize the results that the author has obtained.

However, in order to further generalize these results,

problems with a much larger number of processes need

to be solved.

But, based on the results that the author has already

obtained, out of the eight algorithms tested, four

algorithms stand clearly above the other algorithms in the

list. These are the algorithms proposed by Vijaya Lakshmi

(2015), Rao et al. (2015), Matanech (2009), and Behera

(2011). However, all of these papers report their results and

analyze them based on the examples of small size

containing few processes only. Hence, it is not possible to

rank them according to the level of performance.

Therefore, it is necessary that, more comprehensive

analysis of the performance of these and other algorithms

available for the extensions to the Round Robin algorithm

has to be carried out in order to claim the superiority of

these algorithms.

Considering the importance of this problem in operating

system design, this can be considered as an extremely

useful extension to this study.

References

[1]. Ahad M.A, (2012). “Modifying Round Robin Algorithm

for Process Scheduling using Dynamic Time Quantum

Precision”. Special Issue of International Journal of

Computer Applications, pp. 5-10.

[2]. Barman. D, (2013). “Dynamic Time Quantum in Round

Robin Algorithm Depending on Burst and Arrival Time of

the Processes”. International Journal of Innovative

Technology and Exploring Engineering, Vol.2, No.4,

pp.60-64.

[3]. Behera H.S. et.al, (2011). “Design and Performance

Evaluation of Multi Cyclic Round Robin Algorithm using

Dynamic Time Quantum”. Journal of Global Research in

Computer Science, Vol.2, No. 2, pp. 48-53.

[4]. Datta K., Jana M., and Mazumdar A, (2015). “An

Effective Dynamic Quantum Round Robin CPU

Scheduling Algorithm”. International Journal of Computer

Applications, Vol.130, No.6, pp.1-5.

[5]. Jaiswal R.R., Geetha K., and Mohan R, (2013). “An

Intelligent Adaptive Round Robin (IARR) Scheduling

Algorithm for Performance Improvement in Real Time

Systems”. Proceedings of International Conference on

Advances in Mechanical Engineering.

[6]. Helmy T. and Dekdouk A, (2007). “Burst Round Robin:

As A Proportional-Share Scheduling Algorithm”. in
thProceedings of the 4 IEEE-GCC Conference on Towards

Techno-Industrial Innovations, pp.424-428.

[7]. Khankasikam K, (2013). “An Adaptive Round Robin

Scheduling Algorithm: A Dynamic Time Quantum

Approach”. International Journal of Advancements in

Computing Technology, Vol.5, No.1, pp.595-603.

[8]. Kundargi N. and Emmi M.S, (2014). “Job Scheduling

Algorithm using Finest Time Quantum for Real Systems”.

International Journal of Latest Trends in Engineering and

Technology, Vol.4, No.1, pp.120-123.

[9]. Matanech, R.J, (2009). “Self-Adjustment Time

Quantum in Round Robin Algorithm Depending on Burst

Time of the Now Running Processes”. American Journal of

Applied Sciences, Vol.6, No.10, pp.1831-1837.

[10]. Mishra M.K. and Rashid F, (2014). “An Improved

Round Robin CPU Scheduling Algorithm with Varying Time

Quantum”. International Journal of Computer Science,

Engineering and Applications (IJCSEA), Vol.4, No.4.

[11]. Negi S, (2013). “An Improved Round Robin Approach

using Dynamic Time Quantum for Improving Average

Waiting Time”. International Journal of Computer

Applications, Vol.69, No.14, pp.12-16.

[12]. Noon, A, Kalakech, A. and Kadry, S. (2011). “A New

li-manager’s Journal o Computer Science, Vol. No. 4 ln 3 December 2015 February - 2016

ABOUT THE AUTHOR

Dr. Ruwanthini Siyambalapitiya is a Lecturer attached to the Department of Statistics & Computer Science at University of
Peradeniya, Sri Lanka. Her main research interests are Algorithms and Operating Systems.

8 i-manager’s Journal o Computer Science, n l lVol. 3 No. 4 December 2015 February - 2016

 RESEARCH PAPERS

Round Robin based Scheduling Algorithm for Operating

Systems: Dynamic Quantum using the Mean Average”.

IJCSI International Journal of Computer Science, Vol.8,

No.3, pp.224-229.

[13]. Rao, G.S.N., Srinivasu, N. and Rao, G.R.K. (2015).

“Dynamic Time Slice Calculation for Round Robin Process

Scheduling Using NOC”. International Journal of Electrical

and Computer Engineering, Vol.5, No.6, pp.1480-1485.

[14]. Vijaya Lakshmi, G. (2015). “Determining a Finest

Time Quantum to Improve the Performance of Round

Robin Scheduling Algorithm”. International Journal of

Innovative Research in Computer and Communication

Engineering, Vol.3, No.7, pp.6913-6918.

	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

