
INTRODUCTION

Data Mining

Data Mining is the procedure of extricating hidden,

interesting and valuable examples from vast data sets. It

incorporates a few issues like complex nature, huge data

size that can't be unraveled by ordinary strategies or

methodologies. Consequently, the procedures of

transformative algorithms were utilized to take care of the

single objective issues. In any case, numerous genuine

issues have different clashing execution measures or

destinations. To tackle these various clashes, a few multi

objective developmental algorithms have been

proposed for the essential data mining task prediction.

There are numerous application spaces, where clients

make and share data; news blogs, scientific networks,

social networking groups, or disaster management

networks. Current information sharing tools, like content

management software (e.g., Microsoft Share-Point),

permit clients to share data and Annotation on (label)

them in a specially appointed way. Also, Google Base

permit clients to characterize the characteristics for their

items or look over predefined formats. This explanation

procedure can encourage ensuing data revelation.

Numerous explanation frameworks permit just "untyped"

keyword annotation: in case, a client may clarify a

climate report utilizing a tag, for example, "Storm

Category 3."

Annotation systems that make use of quality worth sets are

for the most part more expressive, as they can contain

more data than untyped approaches. In such settings,

the above data can be entered. A recent line of work

towards using more expressive queries that leverage such

annotations, is the “pay-as-you-go” querying strategy in

Data spaces. In Data spaces, clients give data integration

indications at inquiry time. The suspicion in such

frameworks is that the data sources as of now contain

organized data and the issue is to coordinate the query

traits with the source properties.

Numerous frameworks, however, don't have the

fundamental “attribute-value” annotation that would

make a “pay-as you-go” querying feasible. Explanations

that utilize “characteristic worth” sets oblige clients to be

more principled in their Annotation endeavors. Clients

need to know the hidden composition and field sorts to

utilize; they need to be likewise known when to utilize each

of these fields. With the schema that regularly have tens or

even many accessible fields to fill, this undertaking gets to

be difficult and cumbersome.

 RESEARCH PAPERS

ENHANCED E-TREE FOR MINING HIGH DIMENSIONAL DATA

ABSTRACT

Data Stream classification is one of the critical tasks in data mining. At the point when DataStream touches the base at a

pace of GB/sec, we need to recognize spam, web observing and capacity. It is a troublesome operation and falls flat in

the existing System. Actualizing two Algorithms namely, E-tree Algorithm (Ensemble-tree) and Avaricious Algorithm and

Executing E-tree algorithm, the authors have maintained a strategic distance from the existing issues. Ensemble tree (E-

tree) takes care of extensive volumes of stream data and drifting. E-tree, Classifies and groups the Data Stream and stores

the data effectively. Furthermore, foresee web checking and spam identification precisely. Controlling the web

movement, the authors have actualized the greedy algorithm.

Keywords: E-Tree (Ensemble Tree), Data Stream, Web Monitoring.

* Associate Professor, Department of Computer Science and Engineering, Sree Vidyanikethan Engineering College, Tirupati, India.
** PG Scholar, Department of Computer Science and Engineering, Sree Vidyanikethan Engineering College, Tirupati, India.
*** Professor, Department of Computer Science and Engineering, Sree Vidyanikethan Engineering College, Tirupati, India.

BY
BY

S. SALAM * M. ROJA ** T.V. RAO ***

 i-manager’s Journal o Cloud Computing n , Vol. 3 No. 1 November 2015 - January 2016··24

This results in data entry users ignoring such annotation

capabilities. Even if the system allows users to arbitrarily

annotate the data with such attribute-value pairs, the

users are often unwilling to perform this task: The task not

only requires considerable effort, but it also has unclear

usefulness for subsequent searches in the future: who is

going to use an arbitrary, undefined in a common

schema, an attribute type for future searches. But even

when using a predetermined schema, when there are

many potential fields that can be used, and these fields

are going to be useful for searching the database in the

future.

Data Stream Classification speaks to a standout amongst

the most critical task in datastream mining [5],[6], which is

prominently utilized as a part of real-time detection, spam

filtering and malicious website monitoring. Compared to

traditional classification, Contrasted with conventional

characterization, Data Stream arrangement is

confronting two additional difficulties, they are

substantial/expanding information volumes and

float/advancing ideas. In the existing framework, they

utilized divide and conquer techniques to handle

expansive volumes of stream information [2] with the

concept drifting. It comes up short in some focuses. So in

the proposed method, by making use of E-tree exactness

and time effectiveness has been developed, utilizing two

algorithms E-tree and greedy algorithm. Greedy

calculation is done for controlling the web traffic.

1. Literature Survey

1.1 B-Tree

B-tree is a stable tree in which all the records are held in the

tree's leaves and the leaves are sequentially connected.

It is a stable tree and in its each loop, it shows a disc page

where there are ingressions. B-tree is predicated on

ranking one dimensional data on its leaf nodes. Thus it is

not efficient to store involute data which has a spatial

location.

A B-tree of order m is a tree which satisfies the following

properties:

·Every node has atmost m children.

·Every non-leaf node (except root) has at least [m/2]

children.

·The root has at least two children if it is not a leaf node.

·A non-leaf node with k children contains K-1 keys.

·All leaves appear in the same level.

1.2 R-Tree

A R-tree is a index structure for n-dimensional spatial items

comparable to a B-tree. It is a height balanced tree with

records in the leaf nodes each containing a n-

dimensional rectangle and a pointer to a data object

having the rectangle as a bouncing box. Larger amount

of nodes contain comparative entries which are

connected to lower nodes. The nodes relate to disk pages

if the structure is disk resident, and the tree is composed so

that few nodes will be verified when a spatial search is

performed [9]. The index is fully dynamic, where insertions

and deletions will be intermixed with searches and no

occasional recognition is required. A spatial database

comprises of a group of records containing spatial

objects, and every record has an interesting identifier,

which can be used to recover it. The authors have

estimated each spatial object by a bounding rectangle,

i.e. a collection of intervals, one along the dimension:

 I = (I ,I ,..I) (1)0 1 n-1

where n represents the number of dimensions and Ii is the

closed limit interval of [a, b] describing the extent of the

object along dimension i. And again Ii may have two or

more endpoints, demonstrating that the object extends

outcome indefinitely. Leaf nodes in the tree contain index

record entries of the structure (I, tuple-identifier), where

tuple-identifier points to a tuple in the database and I is a

n-dimensional rectangle containing the spatial object it

refers to. Non-leaf nodes contain entries of the structure (I,

Child-pointer), where child pointer is the location of

another node in the tree and I covers all rectangles in the

lower node entries. In other words, I spatially contains all

data objects indexed in the subtree rooted at I's entry. Let

M be the maximum number of entries that will fit in one

node and let m < M/2 be a parameter indicating the

base number of entries in a node [9]. A R-tree fulfills the

accompanying properties:

·Every leaf node contains between m and M index

 RESEARCH PAPERS

i-manager’s Journal o Cloud Computing n , Vol. 3 No. 1 November 2015 - January 2016·· 25

records unless it is the root.

·For every index record (I, tuple-identifier) in a leaf

node, I is the smallest rectangle that spatially contains

the n-dimensional data object represented by the

demonstrated tuple.

·Every non-leaf node has amongst m and M children

unless it is the root.

·For every entry (1, child-pointer) in a non-leaf node, I is

the smallest rectangle that spatially contains the

rectangles in the child node.

·The root node has at least two kids unless it is a leaf.

·All leaves exist in the same level.

1.3 R* Trees

R* Trees are a variation of R-trees used for indexing spatial

data. R* trees have remotely higher development cost

than standard R-trees, as the information may should be

reinserted; however the subsequent tree will generally

have a superior question execution [7]. Like the standard

R-tree, it can store both point and spatial information.

·The R* trees use the same algorithm as the standard

R-tree for insertion and deletion operations.

·When embedding, the R*-tree uses a mixed

procedure. For leaf nodes, cover is minimized, while

for inward hubs, broadening and region are

minimized.

·When part, the R*-trees uses a topological split that

separates a split node predicated on edge, then

minimizes cover.

·In advisement to an improved split system, the R*-

trees also attempts to shun parts by reinserting objects

and subtrees into the tree, propelled by the idea of B-

trees [8].

The insertion system to the R*-trees is with O(M log M) more

involute than the direct split methodology O(M) of the R-

tree, yet less perplexing than the quadratic split

procedure O(M2) for a page size of M questions and has a

little effect on the aggregate many-sided nature. The

aggregate addition complexity is still commensurable to

the R-tree. Reinsertions influence at most one branch of

the tree and consequently O(log n) reinsertions,

commensurable to playing out a split on a traditional R-

tree. So in general, the involution of the R*-trees is

equipollent to that of a standard R-tree.

The following are the some of the issues that will occur

while performing operations on spatiotemporal

database indexing data structures [1].

1.3.1 Robust Ensemble Learning for Mining Noisy Data

Streams

·Stream-mining problem is for seen using a statistical

estimation framework, and discriminative model, for

fast mining of noisy data streams.

·It supports vector machine algorithm [3], [4] has been

proposed for continuous learning.

·It is not an ideal choice for fast learning on streaming

data.

1.3.2 An Adaptive Engine for Stream Query Processing

·To generate a straightforward initial query plan, which

then adapts automatically to a better initial plan, and

continues to adapt as conditions change.

·Reducing run-time memory requirements for

continuous query processing.

·It addresses the problem of balancing query

execution against profiling and optimizing.

1.3.3 Indexing Boolean Expressions

·The goal is to rapidly find the set of Boolean

expressions that evaluate to true for a given

assignment of values to attributes.

·Boolean expression evaluation on the indexed

objects supports the complex query expressions.

·It doesn't scale to a large number of attributes due to

the inherent limitations of high dimensional indexing.

1.3.4 Enabling Fast Lazy Learning for Data Streams

·Real-time analysis of these data streams is becoming

a key area of data mining research.

·It is easier to reproduce and there is a little cost of

storage and transmission.

·Fewer in number than batch methods and only a

concept of huge number of examples.

 RESEARCH PAPERS

 i-manager’s Journal o Cloud Computing n , Vol. 3 No. 1 November 2015 - January 2016··26

2. Existing System

The existing works think just about combining as a little

number of base classifiers. It misses a few datastreams to

records, since Data streams lands at pace GB/sec. So it

doesn't deal with that high speed [10], [11]. In existing

strategy, node splitting in R-trees, and choice standards

contain discrete attributes that can't be changed during

the area enlargement. Existing spatial indexing strategies

are intended for traditional spatial information. A

classifier-ensemble based on active learning framework

that selectively labels instances from data streams to

build a classifier ensemble. Minimum-variance principle

and the ideal weighting module are then combined to

manufacture a dynamic learning structure for data

streams.

3. Problem Formulation

It may not classify every stream records in an auspicious

way, as it considers just a few number of base classifiers.

Decision rule may contain discrete attributes that can't be

changed during the area enlargement. It takes more

opportunity for order. There is scalability problem in the

existing framework.

4. Proposed System

It decreases the time cost without expanding the error

rate. E-tree is stretched out of R-tree. The Proposed E-tree

indexing structure for sub straight time, many-sided

quality for fast stream records. It effortlessly adjusts with

new idea, low variance and ease of parallelization.

Greedy algorithm is utilized to control web movement.

The proposed minimum-variance is based on dynamic

learning method. The proposed strategy is basically not

sensitive to the noisy data and small chunk sizes.

4.1 Advantages

·Takes care of a large volume of data stream.

·To avoid the adaptability issue.

·It adapts rapidly to new ideas,

·Achieve low variance errors and ease of

parallelization.

·By using Greedy algorithm, the web traffic is

controlled.

5. Data Flow Diagram

5.1 Data Load and Preprocessing

Most ordinarily, a dataset compares to the contents of a

database table, or a single statistical data matrix, where

each section of the table holds to a specific variable, and

every line relates to a given individual from the dataset.

The dataset records values for each of the variables, for

example, height and weight of an object, for every

individual from the dataset.

Data preparation and filtering steps can take significant

measure of handling time. It incorporates normalization,

transformation, feature extraction, selection, etc.,

analyzing the data that has not been precisely screened

for such issues can create misleading results. Therefore,

the representation and nature of data is more important

before running an analysis. Figure 1 shows the Data Flow

Diagram.

5.2 Data Stream Utilizing E-tree

In this module, the authors have computed datastream

and these outfit models allot consistent data streams into

small data chuncks, build one or more light weight base

classifiers from each data chunck, and join base

classifiers in various courses for prediction. E-tree structure

 RESEARCH PAPERS

DATASET COLLECTION

PREPROCESSING

CLASSIFICATION
USING E-TREE

WEB MONITORING

USER

SPAM DETECTION

WEB TRAFFIC
CONTROL

Figure 1. Data Flow Diagram

i-manager’s Journal o Cloud Computing n , Vol. 3 No. 1 November 2015 - January 2016·· 27

that composes base classifiers in a height adjusted tree

structure to accomplish logarithmic time complexity for

prediction. E-tree performs operations, like Search:

traverse an E-tree to order an approaching stream record

Insertion: Integrate new classifiers into an E-tree. Which

leads to an effective result.

5.3 Spam Detection

User tend to be much less bothered by spam slipping

through filters into their mail box than having desired email

blocked. Trying to balance false negatives versus false

positives is critical for a successful anti-spam system.

Some systems let individual users have some control over

this balance by setting "spam score" limits, etc. Most

techniques have both kinds of serious errors, to varying

degrees. In these modules we detect spam message

and good message separately.

Inorder to adjust false negatives versus false positives is a

basic for a fruitful against spam framework. A few

frameworks let singular clients have some control over this

equalization by setting "spam score" limits, and so on.

Most systems have both sorts of genuine blunders, to

fluctuating degrees. In these modules spam message

and great message are recognized independently.

5.4 Web Monitoring

Website monitoring is the procedure of testing and

checking whether end-clients can interface with the site

anticipated. Website monitoring is frequently utilized by

organizations to guarantee website uptime, execution,

and usefulness as expected. Monitoring accumulates

broad information on website execution, such as, load

t imes, ser ver response t imes, page element

performance that is regularly examined and used to

further optimize the website performance.

5.5 Web Traffic Control

Web traffic control is the procedure of managing,

controlling or reducing the network traffic, especially

Internet bandwidth. It is utilized by system network

administrators, to reduce congestion, latency and

packet loss. This is a part of bandwidth management. To

utilize these tools successfully, it is important to measure

the web traffic to decide the reasons for network

congestion and attack those issues particularly.

6. Experimental Results

Initially, a data stream and a dataset is given as an input to

the E-tree. We can see whether the data has been loaded

or not. It starts the preprocessing procedure for the

dataset provided. When the preprocessing procedure is

completed, it will show the difference between the raw

data and the preprocessed data. And then it will show the

properties of the data stream that has been uploaded.

Classification of data can be done according to the

structure of the ensemble tree. In order to calculate the

web traffic for the dataset, it divides the dataset into small

chuncks and a class label is assigned to it. Then a

confusion matrix is generated and greedy algorithm is

applied to that matrix. The results which are generated

after applying the rules present in the greedy algorithm,

identifies the spam in the dataset and a mail is sent.

In Figure 2 graph, X-axis represents the difference

between the time complexity of the existing system and

the proposed system, whereas Y-axis represents the

number of datasets that appears at Gb/sec.

Existing system simply concentrates on converting data

streams to data records.

Conclusion

The authors have implemented the E-tree algorithm that

can efficiently classify the Data Stream. E-tree considers

an expansive volume of stream information and drifting. It

can also predict the malicious URL and spam

identification. E-tree indexing structure for sub linear time

 RESEARCH PAPERS

Figure 2. Results

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

EXISTING SYSTEM

PROPOSED SYSTEM

Time Complexity

N
u

m
b

e
r

f
d

a
e

ts
(G

b
s

c
)

o

ta
s

/

e

 i-manager’s Journal o Cloud Computing n , Vol. 3 No. 1 November 2015 - January 2016··28

complexity is for classifying high speed stream records.

They have derived an ideal weighting strategy to assign

weight values for the base classifiers, such that they can

frame an ensemble with minimum error rate.

References

[1]. ChuanZhou, (2015). “E-Tree: An Efficient Indexing

Structure for Ensemble Models on Data streams”. IEEE

Transactions on Knowledge and Data Engineering,

Vol.27, No.2.

[2]. J. Gao, R. Sebastiao, and P. Rodrigues, (2009). “Issues

in Evaluation of Stream Learning Algorithms”. In KDD 2009.

pp.329-338.

[3]. H. Yu, L. Ko, K. Y, S. Hwang, and W. Han, (2011). “Exact

Indexing for Support Vector Machines”. In SIGMOD 2011.

pp. 709-720.

[4]. Z. Lu, X. Wu, X. Zhu, and J. Bongard, (2010).

“Ensemble Pruning Via Individual Contribution Ordering”.

In KDD 2010. pp. 871-880.

[5]. A. Machanavajjhala, E. Vee, M. Garofalakis, and J.

Shanmugasundaram, (2008). “Scalable Ranked Publish

Subscribe”. In VLDB 2008. Vol. 1, No. 1, pp. 451-462.

[6]. Y. Zhang, S. Burer, and W. Street, (2007). “Ensemble

Pruning Via Semi Definite Programming”. Journal of

Machine Learning Research, Vol. 7, pp. 1315-1338.

[7]. C. Domeniconi and D. Gunopulos, (2011).

“Incremental Support Vector Machine Construction”. In

ICDM 2011, pp. 589-592.

[8]. Y. Tao and D. Papadias, (2014). “Performance Analysis

of R*-trees with Arbitrary Node Extents”. IEEE Transactions

on Knowledge and Data Engineering, Vol. 16, No. 6, pp.

653-668.

[9]. A. Guttman, (1984). “R-Trees: A Dynamic Index

Structure for Spatial Searching”. Proc. ACM SIGMOD, pp.

47-57.

[10]. P. Domingos and G. Hulten, (2000). “Mining High-

Speed Data Streams”. Proc. Sixth ACM SIGKDD Int'l Conf.

Knowledge Discovery and DataMining (KDD), pp. 71-80.

[11]. C. Domeniconi and D. Gunopulos, (2001).

“Incremental Support Vector Machine Construction”,

Proc. IEEE Int'l Conf. Data Mining (ICDM).

 RESEARCH PAPERS

ABOUT THE AUTHORS

Shaik Salam is currently working as an Associate Professor in the Department of Computer Science and Engineering at Sree
Vidyanikethan Educational Institutions, Tirupati, India. He received his Bachelor's Degree from Marathwada University, and then he
received his Master's Degree from Sathyabhama University, Chennai. He is also pursuing his Ph.D Degree at Aacharya Nagarjuna
University, Guntur. His research interests include Spatial Mining, Web Mining, and Programming Languages.

M. Roja received her Bachelor's Degree from Yogananda Institute of Technology & Science, Tirupathi. She is currently pursuing her
Postgraduation in the Department of Computer Science and Engineering, at Sree Vidyanikethan Educational Institutions,
Tirupathi. Her research areas include Data Mining, and Programming Languages.

Dr. Venkat Tiruveedhula received his Bachelor's Degree from June 1977 with First Class from A.U. College of Engineering, Andhra
Visakapatnam, University, India, and M.E., (Computer Science) in September, 1979 with First Class from P.S.G. College of
Technology, Coimbatore, University of Madras, India. He obtained his Ph.D., (Computer Engineering) in December, 1992 with
3.76 G.P.A. in the Department of Electrical and Computer Engineering, from Wayne State University, Detroit, U.S.A. He is currently
working as an Associate Professor in the Department of Computer Science and Engineering at Sree Vidyanikethan Educational
Institutes, India.

i-manager’s Journal o Cloud Computing n , Vol. 3 No. 1 November 2015 - January 2016·· 29

	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35

