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ABSTRACT 

To build a power stabilizer and increase multimachine stability, a novel opposition based whale 

optimization algorithm (OWOA) is used in the current contribution. A conventional PSS with lead-lag 

compensator is considered for this work. OWOA fine-tunes the PSS's settings. The objective function 

utilised for tuning is the minimising of integral absolute error of speed deviations of generator rotors. 

Different time-domain simulation test cases are performed to validate the superior performance of the 

proposed PSS. Further, the performance of proposed PSS is compared with whale optimization algorithm 

(WOA) based PSS and conventional PSS. The obtained results certify the efficient performance of proposed 

OWOA based PSS for power oscillation damping.     

Keywords: Power oscillations; Whale optimization algorithm; opposition-based learning; power system 

stabilizer; 2-area 4-machine system. 

 

INTRODUCTION 

The rise in demand for electricity has resulted in the 

extension and connectivity of previously established 

networks. The electricity system is influenced in a 

variety of ways by these interconnections. The rotor 

angle instability is one of the more noticeable 

phenomena that can occur inside these coupled 

systems [1]. Conventional power system stabilizers 

(CPSSs) are put to use to dampen out oscillations 

between areas of a system that are more likely to 

occur in interconnected systems. However, in order 

to achieve such accurate performance of CPSSs, a 

CPSS that has been designed correctly is required [2]. 

There are a number of papers available that point to 

the utilisation of optimization methods in the design 

of PSS with reference to power oscillation damping. It 

is discussed in [3], how the robust control theory can 

be applied to the process of designing a CPSS. An 

enhanced fuzzy logic power stability scheme designed 

to increase the stability of multimachine power 

systems is provided in [4]. In [5], CPSSs are designed 

in such a way to suppress electromechanical 

oscillations. In [6], the authors suggest creating a 

CPSS and a Static VAR Compensator (SVC) based on 

Shuffled Frog Leaping (SFL) and Chaos Particle Swarm 

Optimization (PSO) Algorithms to boost the stability 

of the power system. A coordinated design approach 

for CPSSs and automatic voltage regulators (AVRs) in 

a intensely linked system is presented here. in [7]. A 

new optimization technique based on the multi-

objective genetic approach (MOGA) has been 

proposed in [8] with the aim of achieving the best 

coordinated selection of power system stabilizers 

(PSS) and flexible AC transmission systems (FACTS). 

The components of FACTS devices include a standard 

lead-lag damping controller built on a thyristor based 

controlled phase shifter (TCPS), static variable 

compensators (SVC), and a thyristor controlled series 

compensator (TCSC). A new field test developed to 

appropriately assess the PSSs' performance in 

reducing oscillations in a power station with multiple 

generators is discussed in in [9]. Using coordinated 

gain tuning and coordinated phase and gain tuning as 



examples, [10] demonstrates that conic programming 

is a highly effective method for resolving issues 

related to the creation of reliable power system 

stabilizers (PSS). According to [11], evolutionary 

algorithms can be utilized to create resilient 

multimachine power system stabilizers with the best 

multi-objective design. The power system in France 

now includes a robust coordinated PSS+AVR termed 

the "desensitized Four Loop regulator" which was 

built for the system and is currently in the process of 

being installed [12]. In [13], a multi-objective 

optimization model is provided for the goal of 

determining the feasible stability zone and the 

highest enduring disturbance rejection for a dynamic 

model of a small-signal power system with saturation 

nonlinearities and disturbance rejection. In [14], an 

innovative method to the optimal design of 

multimachine CPSSs that is based on an evolutionary 

algorithm is presented. An examination of the 

efficiency of CPSSs is presented taking into account a 

variety of system circumstances and operating loads 

in [15]. A CPSS that is based on tabu search (TS) is 

proposed in [16]. In [17], a method for simultaneously 

tuning modern CPSSs in multimachine power systems 

that is based on an algorithm called the Bacterial 

Foraging Algorithm (BFA) is described. Well-known bio-

inspired algorithms include the bacterial foraging 

algorithm (BFA) and small-population-based PSO 

(SPPSO). To construct several optimum PSSs in two 

power systems simultaneously, [18] covers both of 

these. The proposed approach makes use of a Kalman 

filter as its foundation, and it is predicated on the 

system identification as presented in [19]. In [20],  PSO 

algorithm has been modified to have tiny population is 

described in order to create the superior CPSSs. The 

scheme of an adaptive power system stabilizer by 

means of artificial neural network (ANN) is described in 

[21]. A pole placement method for power system 

stabilizers (PSS) and stabilizers based on thyristor 

controlled series capacitors (TCSC) has been published 

in [22] using the simulated annealing (SA) algorithm. 

The ideal locations and designs of sturdy multimachine 

power system stabilizer (PSSs) are presented in [23] 

using a genetic algorithm (GA). A new metaheuristic 

method called the bat search algorithm has been put 

forth in [24] for the best design of Power System 

Stabilizers (PSSs) in a multimachine setting. For the 

design of CPSSs in a multimachine power system, the 

Cuckoo Search (CS) algorithm is presented in [25]. For 

the purpose of reducing oscillations in power systems, 

a power system stabilizer (PSS) based on BFOA is 

proposed in [26]. In [27], a harmony search algorithm 

(HSA) is used to create a fuzzy logic power system 

stabilizer, aiming to establish the best balance 

between the input and output scaling factors of the 

fuzzy logic controller (FPSS). The damping factor and 

damping ratio are typically used as restrictions in the 

mathematical representation of the process of fine-

tuning the PSS parameters for a multimachine power 

system, as shown in [28].  

In this study, a PSS is created using the opposition-

based whale optimization algorithm (OWOA) to 

reduce power oscillations in multimachine systems. A 

successful optimization algorithm is the whale 

optimization algorithm (WOA) [29]. The minimization 

of integral time absolute errors of speed deviations of 

generator rotors is taken into account as a fitness 

function for setting PSS parameters. System with 

suggested PSS performance is validated by 

comparison to system with WOA-based PSS, system 

with CPSS, and system without PSSs. Under various 

operating situations, the suggested PSS's effective 

performance is investigated. It is discovered that the 

suggested OWOA-based PSS outperforms other PSSs. 

1. Structure of PSS 

Conventionally, phase compensation approach is 

adopted in design of CPSS. In this work, the same 

approach is adopted. The transfer function block of 

CPSS is depicted in Fig. 1. The basic blocks in CPSS are 

gain block, washout block, lead-lag phase 

compensation block and a limiter. Rotor speed 

deviation is given as input to CPSS which goes into 

gain block with gain 𝐾𝑔𝑎𝑖𝑛 .  
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Fig. 1 Block diagram of classical PSS. 

The signal from gain block enters washout block with 

washout constant 𝑇𝑊𝐹 = 10 𝑠. From washout block, 

the signal passes through phase compensation blocks 

with time constants 𝑇𝐿𝑒𝑎𝑑1, 𝑇𝐿𝑒𝑎𝑑2, 𝑇𝐿𝑎𝑔1 and 𝑇𝐿𝑎𝑔1.  



A stabilizing signal ∆𝑉𝑠𝑡𝑎𝑏 is obtained after phase 

compensation block. This stabilizing signal is used by 

exciter of generator to damp out power oscillations. 

During transient operation, CPSS should stabilize the 

system. 

2. System under study 

A two-area four machine that sees widespread use. 

The testing system used by Kundur is investigated in 

this work. As can be seen in Fig. 2 a MATLAB model of 

the system has been developed. The testing system is 

made up of two completely symmetrical areas that 

are connected to one another by two 230 kV lines that 

are each 220 km in length. It was developed with a 

specialized focus  to learn about low frequency 

fluctuations in linked systems [30, 31]. There are two 

identical round rotor generators at each location that 

each have a rating of 20 kV/900 MVA. The parameters 

[30, 31] for the synchronous machines are the same, 

with the exception of the inertias, which in region 1 

are H = 6.5s and in region 2 are H = 6.175s[30, 31]. In 

addition, it is presumed that the speed regulators in 

all thermal plants will be identical, and fast static 

exciters will have a gain of 200 [30, 31]. The load is 

spread among the areas as constant impedances, 

with area 1 serving as the source of 413 MW of power 

that is exported to area 2. It is possible for generation 

and transmission losses to differ depending as per the 

level of detail in the representation of the line and the 

generator. 
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Fig. 2. Single line diagram of Kundur system.   

3. Problem formulation 

To obtain optimal parameters of CPSS, the 

minimization of integral time-multiplied absolute 

errors (ITAE) of the speed deviations of t rotors of 

generators is considered as the fitness function. The 

fitness function 𝐽 is expressed in the following 

manner: 

𝐽 = ∫ (𝛥𝜔𝑟𝑜𝑡𝑜𝑟,𝑖)
𝑇𝑆

𝑡=0
⋅ 𝑡 ⋅ 𝑑𝑡  (1) 

where, 𝛥𝜔𝑟𝑜𝑡𝑜𝑟,𝑖  is the speed deflection in 𝑖th 

generator and 𝑖 = 1,2,3 𝑎𝑛𝑑 4. 𝑇𝑆 is the total 

simulation time. The fitness function 𝐽 expressed in 

(1) is minimized considering the following parameter 

constraints. The constraints are expressed as follows: 

𝐾𝑔𝑎𝑖𝑛
𝑚𝑖𝑛 ≤ 𝐾𝑔𝑎𝑖𝑛 ≤ 𝐾𝑔𝑎𝑖𝑛

𝑚𝑎𝑥   (2) 

𝑇𝐿𝑒𝑎𝑑1
𝑚𝑖𝑛 ≤ 𝑇𝐿𝑒𝑎𝑑1 ≤ 𝑇𝐿𝑒𝑎𝑑1

𝑚𝑎𝑥   (3) 

𝑇𝐿𝑒𝑎𝑑2
𝑚𝑖𝑛 ≤ 𝑇𝐿𝑒𝑎𝑑2 ≤ 𝑇𝐿𝑒𝑎𝑑2

𝑚𝑎𝑥   (4) 

𝑇𝐿𝑎𝑔1
𝑚𝑖𝑛 ≤ 𝑇𝐿𝑎𝑔1 ≤ 𝑇𝐿𝑎𝑔1

𝑚𝑎𝑥   (5) 

𝑇𝐿𝑎𝑔2
𝑚𝑖𝑛 ≤ 𝑇𝐿𝑎𝑔2 ≤ 𝑇𝐿𝑎𝑔2

𝑚𝑎𝑥   (6) 

where, 𝐾𝑔𝑎𝑖𝑛  is the gain of PSS and 

𝑇𝐿𝑒𝑎𝑑1, 𝑇𝐿𝑒𝑎𝑑2, 𝑇𝐿𝑎𝑔1, 𝑎𝑛𝑑 𝑇𝐿𝑎𝑔2 are the coefficients of 

phase compensation block of PSS. ′𝑚𝑎𝑥’ and ‘𝑚𝑖𝑛’ 

superscripts represent maximum and minimum 

values of the parameters. 

 As a result, the primary objective in tuning 

the parameters of PSS is to achieve the lowest 

possible value of the fitness function 𝐽 defined in (1) 

subjected to the  system constraints expressed in (2), 

(3), (4), (5), and (6). OWOA is proposed as a answers 

to the challenges of tuning the parameters of PSS 

within the scope of this work. 



4. Opposition-based whale optimization 

algorithm 

4.1 Overview of whale optimization algorithm 

The WOA method, a population-based meta-
heuristic optimization technique, was inspired by 
humpback whales' bubble-net feeding habit. It is a 
relatively novel algorithm that has been proposed in 
[29] and is utilized to get answers of a variety of 
optimization problems [32-36]. The three basic stages 
of this procedure are encircling the prey, spiral 
bubble-net feeding behavior, and hunting for prey. 
The mathematical model that supports each phase is 
described here. 

4.1.1 Encircling prey 

It is widely believed that whales have the ability 
to find their prey before circling it. All whales make an 
effort to modify their positions in order to get closer 
to the prey since they believe it to be the best 
candidate solution. This behavior can be understood 
mathematically by looking at the following 
representation: 

�⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 = |𝐹 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 ⋅ 𝑋 𝑛
𝑏𝑒𝑠𝑡 − 𝑋 𝑛|  (7) 

𝑋 𝑛+1 = 𝑋 𝑛
𝑏𝑒𝑠𝑡 − �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 ⋅ �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒   (8) 

where 𝑋 𝑛
𝑏𝑒𝑠𝑡 is the best position vector in 𝑛th 

iteration. �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒   and 𝐹 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒  are coefficient 

vectors. 𝑋 𝑛 and 𝑋 𝑛+1 are the position vectors in 𝑛th 

and (𝑛 + 1)th iterations, respectively.  

The vectors �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒  and 𝐹 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒  are computed 
as 

�⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 = 2𝑒 ⋅ 𝜖 − 𝑒   (9) 

𝐹 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 = 2 ⋅ 𝜖   (10) 

where 𝑒  is linearly decreasing from 2 to 0 with each 

iteration and 𝜀  is a random number in the range [0,1]. 

4.1.2 Bubble-net feeding behavior 

The spiral updating position and the shrinking 
encircling mechanism form the basis for this phase's 
methodology. The feeding behavior is achieved in the 
shrinking encircling mechanism by lowering the value 
of 𝑒  defined as in (9). Due to the dependence of 

�⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒   on  𝑒  , �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒  will also decrease as 𝑒  

decreases. Therefore, it can be claimed that �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒  
is a value chosen at random from the interval [−𝑒 , 𝑒 ]. 
The position of the new candidate solution can be 

defined as falling somewhere between the position of 
the currently best solution and the position it 

originally occupied if the random values for �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒  
are set in the interval [-1,1]. 

In the spiral updating position phase, the mimicry 
of helix-shaped movements made by whales is 
modelled by a spiral mathematical equation, which 
can be represented as follows: 

�⃗� 𝑠𝑝𝑖𝑟𝑎𝑙 = |𝑋 𝑛
𝑏𝑒𝑠𝑡 − 𝑋 𝑛|  (11) 

𝑋 𝑛+1 = �⃗� 𝑠𝑝𝑖𝑟𝑎𝑙 ⋅ (exp)𝑏𝑙 ⋅ 𝑐𝑜𝑠(2 ⋅ 𝜋 ⋅ 𝑙) + 𝑋 𝑛
𝑏𝑒𝑠𝑡  (12) 

where the �⃗� 𝑠𝑝𝑖𝑟𝑎𝑙  is distance between the whale and 

its prey. A constant called b is used to specify the 
spiral's shape, and l can be any random number 
between [-1,1]. 

In addition, while the optimization process is being 

carried out, it is assumed that there is an equal 

likelihood of a spiral updating position phase and an 

equal probability of a shrinking encircling mechanism. 

If 𝜌 is any random number between 0 and 1, then the 

following is one way to define the whales' most 

recent position vector.  

𝑋 𝑛+1 =

{
𝑋 𝑛

𝑏𝑒𝑠𝑡 − �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 ⋅ �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒            if 𝜌 < 0.5

�⃗� 𝑠𝑝𝑖𝑟𝑎𝑙 ⋅ (𝑒𝑥𝑝)𝑏𝑙 ⋅ 𝑐𝑜𝑠(2 ⋅ 𝜋 ⋅ 𝑙) + 𝑋 𝑛
𝑏𝑒𝑠𝑡       if 𝜌 ≥ 0.5

 

 (13) 

The solutions that are deemed to be superior will 
move on to the next phase. 

4.1.3 Searching for prey 

During this phase, whales looks for prey in a 
random manner while taking into account the 
positions of one another. In order to carry out this 

phase of the process, the value of �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒  is changed 
so that it is either less than -1 or greater than 1, which 
compels the agents to advance further inside the 
search space. A search on a global scale is conducted 
as a result. The following is an illustration of how it is 
represented: 

�⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 = |𝐹 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 ⋅ 𝑋 𝑛
𝑟𝑎𝑛𝑑 − 𝑋 𝑛|  (14) 

𝑋 𝑛+1 = 𝑋 𝑛
𝑟𝑎𝑛𝑑 − �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒 ⋅ �⃗� 𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑒   (15) 

where 𝑋 𝑛
𝑟𝑎𝑛𝑑  is a position vector taken at random 

from the group that is currently being used. The 
solutions that are judged to be superior are chosen 
and brought forward to the subsequent iteration. As 



a result, the procedure in its entirety is carried out 
again and again until the termination criteria are 
fulfilled. 

4.2 Opposition based learning 

Opposition based learning is introduced in [37]. In this 

type of learning, the fitness functions are evaluated 

on randomly generated solution and on opposite 

number solution and whichever is produces the 

minimum value for a minimization problem is chosen. 

Mathematically, it is represented as 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑  if 𝑓(𝑥𝑜𝑙𝑑) < 𝑓(𝑥𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒)  

     (20) 

where  𝑥𝑜𝑙𝑑  and 𝑥𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒  are the old solution and 

opposite solution. 

The opposite number or solution 𝑥𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒  can be 

obtained by  

𝑥𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 = 𝑚 + 𝑛 − 𝑥𝑜𝑙𝑑      

     (21) 

where 𝑥𝑜𝑙𝑑  lies in the range [𝑚, 𝑛]. 

4.3 Opposition based whale optimization algorithm 

The OWOA is proposed in this work where the initial 

random solution will be replaced by opposite number 

solution. Rest of the method of OWOA will remain 

same as WOA. 

4.4 Implementation of OWOA to the problem 

The problem of tuning the parameters of PSSs is 

addressed by applying OWOA as a solution. The 

following is enumeration of the various steps that 

were involved in its implementation: 

Step1: Read the data from the system and adjust the 

algorithm control parameters, like the maximum 

number of iterations, the population size and the 

boundary conditions. 

Step 2: Generate the initial population of the solution 

by selecting individuals at random from the search 

space. 

Step 3: Generate opposite number solution from 

initial randomly generated solution. 

Step 4: Determine the optimal solution after 

analyzing the objective function. 

Step 5: It is necessary to update the solution in 

accordance with the updating equation. 

Step 6: Choose the more effective solutions to take 

part in the following iteration. 

Step 7: Proceed to step 3 until one of the criteria for 

terminating the process has been satisfied. 

5. Simulation results and discussion 

The results of the simulation as well as a discussion of 

them are presented in this section. When performing 

the simulation, both the large-signal and the small-

signal stability test cases are taken into consideration. 

The system that has been looked at is a four-machine 

system with two-area. To tune the parameters of 

power system stabilizers, OWOA algorithm is applied. 

For each and every test case, a total of one hundred 

iterations and a population size of twenty are taken 

into consideration. On the MATLAB platform, both 

the modelling of the system and the implementation 

of the algorithms are carried out. OWOA has the 

additional benefit of having fewer algorithm-specific 

parameters, which is a distinct advantage. The 

boundary conditions of parameters of PSS are shown 

in Table 1.  

Table 1. Boundary conditions of parameters of PSS 

Paramete

rs 

𝐾𝑔𝑎𝑖𝑛  𝑇𝐿𝑒𝑎𝑑1 𝑇𝐿𝑒𝑎𝑑2 𝑇𝐿𝑎𝑔1 𝑇𝐿𝑎𝑔2 

Range 1 - 

50 

0.01 

– 

0.01  

0.01 

– 0.1 

1 - 

10 

1 - 

10 

 

Two test examples are taken into consideration for 

fine-tuning PSS's parameters. The first case evaluates 

the robustness of the proposed PSS under the 

stability of small signals. The second case evaluates 

how well the proposed PSS performs in terms of its 

large-signal stability. In each scenario, the tuned 

parameters along with the value of the objective 

function are tabulated for OWOA-based PSS and 

WOA-based PSS, respectively, and compared with 

one another. Simulations in the time domain are 

presented in order to demonstrate how the proposed 

PSSs improve the overall functionality of the system. 



 
Fig.3  Simulink diagram of the studied system. 

 

 

Fig. 4 Parameters of generators 

 

Fig. 5 Parameters of excitation system 



 

Fig. 6 Parameters of steam turbine 

Fig. 7 Parameters of transmission line 

 

Fig. 8 Parameters of three-phase fault 

5.1 Small-signal stability 

The small-signal stability assessment of the system is 

carried out so that the performance of the proposed 

PSS can be demonstrated. It is assumed that there will 

be an increase of 10% in the voltage reference of 

generator G1 that will be applied at 1 s and 

maintained for 0.2 s. In this particular scenario, the 

PSS parameters are fine-tuned with the assistance of 

OWOA and WOA. Table 2 displays the tabulated 

results of the study. The table shows that the 

minimum value of objective function J is found to be 

0.0015, which is obtained from OWOA. This 

information can be seen by looking at the table. As a 

result, we can conclude that the performance of a PSS 

based on OWOA is superior to the PSS based on WOA.  

Table 2. Optimal parameters for case of small-signal 

stability 

Values WOA based PSS OWOA based PSS 

𝐽 0.0024 0.0015 

𝐾𝑔𝑎𝑖𝑛  50 50 

𝑇𝐿𝑒𝑎𝑑1 0.0832 0.0100 

𝑇𝐿𝑒𝑎𝑑2 0.0562 0.0169 

𝑇𝐿𝑎𝑔1 7.4744 10 

𝑇𝐿𝑎𝑔2 5.0101 7.2166 

 

The performance of system with proposed PSS is 

demonstrated through time-domain simulations, in 

comparison to the system without PSSs and the 

system with conventional PSSs. In Fig. 9 rotor-angle 

discrepancies are displayed. It is evident from the 

figure that the the deviations are reaching steady-

state if OWOA based PSS is used in the system. 

Further, proposed PSS is found to be better than WOA 

based PSS and CPSS. The system without PSS 

becomes unstable in case of small disturbance in 

reference voltage at terminal of generator G1. The 

rotor speed variations after the disturbance are 

depicted in Fig. 10. The same aforementioned 

inference can be derived from the figure results.  

Therefore, it can be concluded here that OWOA 

based PSS is performing efficiently than others in 

context of power oscillation damping in case of small 

signal stability   
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Fig. 9. Rotor-angle deviations for case of small-signal 

stability. (a) 𝛿1 − 𝛿2 (b) 𝛿1 − 𝛿3 (c) 𝛿1 − 𝛿4. 

 

(a) 

 

(b) 

 

(c) 



 

(d) 

Fig. 10. Rotor speed for case of small-signal stability. 

(a) 𝜔1 (b) 𝜔2 (c) 𝜔3 (d) 𝜔4. 

5.2 Large-signal stability 

In this case, the performance of the proposed PSS is 

analyzed to determine whether or not the system 

stabilizes after any significant disturbances. For the 

purpose of simulation, a three-phase fault to the 

ground is introduced on the middle of the line 7 - 8 at 

1 second and is cleared after 0.1 second. In this 

particular scenario, the PSS parameters are fine-

tuned with the assistance of OWOA and WOA. Table 

3 displays the tabulated results of the study. The table 

shows that the minimum value of objective function J 

is found to be 0.0032 which is obtained from the 

OWOA. This can be seen by looking at the table. As a 

result, it can be concluded that the performance of a 

PSS based on OWOA is superior to that of a PSS based 

on WOA. 

The performance of system with proposed PSS is 

demonstrated through time-domain simulations, in 

comparison to the performance of the system 

without PSSs and the system with conventional PSSs. 

In Fig. 11 rotor-angle discrepancies are displayed. It is 

evident from the figure that the deviations are 

reaching steady-state if OWOA based PSS is used in 

the system. Further, proposed PSS is found to be 

better than WOA based PSS and CPSS. The system 

without PSS becomes unstable in case of small 

disturbance in reference voltage at terminal of 

generator G1. The rotor speed variations after the 

disturbance are depicted in Fig. 12. The same 

aforementioned inference can be derived from the 

figure results. Therefore, it can be concluded here 

that OWOA based PSS is performing efficiently than 

others in context of power oscillation damping in case 

of large signal stability 

Table 3. Optimal parameters for case of large-signal 

stability 

Values WOA based PSS OWOA based PSS 

𝐽 0.0038 0.0032 

𝐾𝑔𝑎𝑖𝑛 12.9485 10.0785 

𝑇𝐿𝑒𝑎𝑑1 0.0577 0.0912 

𝑇𝐿𝑒𝑎𝑑2 0.0634 0.0858 

𝑇𝐿𝑎𝑔1 5.4545 8.7230 

𝑇𝐿𝑎𝑔2 4.2469 4.0983 
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Fig. 11. Rotor angle deviations for case of large-

signal          stability. (a) 𝛿1 − 𝛿2 (b) 𝛿1 − 𝛿3 (c) 𝛿1 −

𝛿4. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 12. Rotor speed deviations for case of large-

signal stability. (a) 𝜔1 (b) 𝜔2 (c) 𝜔3 (d) 𝜔4. 

6. Conclusion 

In this work, the OWOA is used to tune the 

parameters of the CPSS for power oscillation 

damping. For the purpose of simulation, a widely 

used two-area four machine test system is utilized. 

The OWOA-based PSS is developed by attempting to 

minimize the integral errors caused by variations in 

rotor speed. For the purpose of evaluating how well 

the proposed OWOA-based PSS performs, two test 

cases consisting of small-signal and large-signal 

stability assessments are carried out. The results of a 

comparison between the performance of the 

proposed PSS and the performance of a WOA-based 

PSS validate the superior performance of the 



proposed PSS. When the system with proposed PSS is 

compared to the system with only CPSS and the 

system without PSS, one can draw the conclusion that 

the system with proposed PSS performs better than 

the systems with CPSSs and systems without PSSs 

based on the observations. Future research directions 

include the application of a hybrid optimization 

algorithm to tune the parameters of PSS in order to 

get better tuned values, the formulation of a multi-

objective optimization problem in order to achieve 

better performance of the system under 

disturbances, the design of PSS for renewable 

integrated energy system using the proposed 

technique, and the testing of the performance of the 

proposed PSS on large power systems. 
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