
 RESEARCH PAPERS

FEATURE REDUCTION TECHNIQUES BASED
CODE SMELL PREDICTION

By

PRAVIN SINGH YADAV * RAJWANT SINGH RAO **

*-** Department of Computer Science & Information Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.

Date Received: 08/11/2022 Date Revised: 14/11/2022 Date Accepted: 20/11/2022

ABSTRACT

Code Smell refers to the telltale signs of poor code design that leads to software quality issues. Developers require specific

methods to measure the complexity of Code Smells in order to resolve the problem quickly. Recent research has

examined the problem of predicting Code Smell using various detection methods. However, the accuracy of machine

learning-based Code Smell detectors is still at a normal level. One of the main objective of this paper is to assess how

well dimensionality reduction methods can predict Code Smells. This paper uses three machine learning techniques with

feature reduction techniques, such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor

Embedding (t-SNE), and Linear Discriminate Analysis (LDA). Ten-fold cross-validation is used to ensure that the model is

well-trained. Datasets are balanced using the Synthetic Minority Oversampling Technique (SMOTE) to ensure an equal

number of classes in each dataset. The experimental result concluded that the AdaBoost method with LDA performs

better in both the Long Parameter List and Switch Statement datasets, with an accuracy of 92.72% and 91.24%,

respectively.

Keywords- Code Smell, Code Smell Prediction, Data Balancing, Feature Selection, Machine Learning Techniques.

INTRODUCTION

Software with a bad Code Smell has a structural flaw that

could be difficult to fix in the future. There is a chance that

it will slow down the operations or cause the software to

crash. It is crucial to anticipate Code Smells early on.

Code Smells can be predicted using the refactoring

strategy's applications (Yamashita & Moonen, 2012).

Code Smells can be reduced, software quality and

maintenance can be improved through the refactoring

process. 22 different types of code smells have been

defined. (Fowler, n.d.).

Due to the code's size and complexity, maintaining

software on a massive scale is a formidable challenge.

Software maintenance costs are more than 80% of the

entire development price (Catolino et al., 2020).

There are some limitations to the Code Smell detectors.

Code Smells are typically challenging to pin down since the

definitions are subject to interpretation (Paiva et al., 2017).

This paper primarily focuses on measuring the efficacy of

feature-reduction techniques for classifying Code Smells.

This research used benchmark datasets from an earlier

investigation by Arcelli Fontana et al. (2016); different

machine learning (ML) models were used.

The 420 instances are in the Long Parameter List and

Switch Statement datasets, which are examples of

method-level Code Smells. Software metrics are there in

the datasets as features. This paper employs feature

reduction methods to improve the accuracy of Code

Smell prediction. This paper used three ML methods to

identify Code Smells in datasets that employ a

dimensionality reduction strategy.

1. Literature Review

Kreimer (2005) suggested a method for detecting two

i-manager’s Journal on Power Systems Engineering, Vol. 9 l No. 2 l May - July 2021 1

 RESEARCH PAPERS

Code Smells (Long Method and Large Class) in two

different software applications using a Decision Tree (DT)

model. The model's accuracy was entirely satisfactory.

Liu et al. (2021) combined a deep learning strategy with

bootstrap ensemble learning to identify four distinct

smells in source code. Ten widely used open-source

programs were used for testing and employed an

automatic detection method to generate a massive

collection of training data. The F-measure values for four

different types of Code Smell detectors have improved,

and the evaluation results demonstrate that the

proposed model is significantly improved over prior

techniques.

Abdou and Darwish (2018) proposed a comparison study

between individual and ensemble learners to forecast

software errors. The preprocessing step of Synthetic

Minority Oversampling Technique (SMOTE) resampling has

been employed to rectify the data imbalance issue.

Predicting software flaws has been done using several

ensemble learning methods.

Dewangan and Rao (2022) presented five ML classifiers to

extract Code Smells from four Code Smell datasets. In

addition, the essential features are extracted from each

dataset using a feature selection technique. Using the

Random Forest (RF) model on the feature envy dataset,

and achieved 99.12% accuracy.

Dewangan et al. (2022) discussed effective Code Smell

detection and improvements, achieved with the

application of Principal component analysis based

Logistic regression (PCA_LR), Principal Component

Analysis based k-nearest neighbor (PCA_KNN), Principal

Component Analysis based Random Forest (PCA_RF),

Principal Component Analysis based Decision Tree

method (PCA_DT). The Data class obtains 99.97%

accuracy with PCA_LR.

Yadav et al. (2021) suggested a Decision Tree (DT) model

to identify the Code Smell with hyperparameter tuning,

which achieved an accuracy of 97.62% in both the blob

class and the data class datasets.

Alazba and Aljamaan (2021) used the gain metrics

selection approach and a Stack-Support Vector Machine

(SVM) model to get the best possible outcome. The

model achieved 88.89% and 92.50% accuracy with the

Gaussian Process (GP) classifier for the Switch Statement

and Long Parameter List datasets.

Aljamaan (2021) constructed a heterogeneous voting

ensemble using DT, Logistic Regression, Support Vector

Machine, Multi-Layer Perceptrons, and Stochastic Gradient

Descent models. Soft voting was used to compile the

predictions from different participants into an overall

ensemble prediction. The voting ensemble obtains 91.8%

and 87.8% accuracy in predicting the Long Parameter

List and Switch Statement datasets, respectively.

Dewangan et al. (2021) employed six ML approaches

with chi-square and Wrapper- Based feature selection

techniques. The classifier obtained 100% results using

the Logistic Regression for Long Method dataset.

Dewangan et al. (2022) presented a Code Smell

prediction approach using ensemble ML. The author

utilized five ML and two deep learning techniques and

obtained 100% accuracy in the Long Method dataset.

2. Research Methodologies

Classifiers based on ML have been built to identify Code

Smells. A solution to the data imbalance problem in

training sets has been implemented using the SMOTE

resampling method. The literature makes use of a wide

variety of dimensionality reduction methods. Figure 1

shows and explains the flow of the proposed experiment.

Figure 1. Workflow of Proposed System

2 i-manager’s Journal on Power Systems Engineering, Vol. 9 l No. 2 l May - July 2021

 RESEARCH PAPERS

The primary objective of this research is to optimize

feature reduction for improved classifier performance.

2.1 Reference Datasets

This investigation makes use of benchmark data used by

(Arcelli Fontana et al., 2016). The 76 Java systems

included in the datasets cover a wide range of classes,

packages, and different application fields. The 76

systems are used to calculate a huge number of object-

oriented metrics. The definition of these measures was

influenced by software quality factors like complexity,

scale, and coupling. In this paper, Long Parameter List

and Switch Statement datasets are used, they belong to

method-level datasets. As shown in Table 1, each dataset

contains 420 instances, of which 140 instances are smelly

and 280 instances are non-smelly.

2.2 Long Parameter List

A Long Parameter List is an example of a Code Smell at

the level of a method. As in this method, an excessively

high number of parameters would make performing the

function more challenging. This smell belongs to the

Bloaters smell group (Alazba & Aljamaan, 2021).

2.3 Switch Statement

A Switch Statement Code Smell is an example of a

method-level Code Smell. The smell is specified using a

Switch Statement or a chain of if statements. There is a

Code Smell which adds a new condition that requires so

many other changes. These Code Smells come under

object-oriented abusers (Alazba & Aljamaan, 2021).

2.4 Data Preprocessing

This process consists of several data pre-processing steps,

such as missing value handling, data normalization, data

balancing, cross-validation, and dimension reduction.

When dealing with missing data, the mean value

imputation method is applied. Min-max normalization is

used in datasets. SMOTE is utilized to balance the number

Code Smell Features Number of Number of Smelly Number of non-

of classes in the datasets. To obtain better performance,

ten-fold cross-validation is applied. It divides the dataset

into ten parts, and for each iteration, one-fold is used as

testing data, and the rest of the part is used as training

data.

2.5 Dimension Reduction

Feature selection and feature reduction techniques

come under "dimensionality reduction." In this paper,

three feature reduction techniques are utilized in the

Code Smell datasets.

• Principal Component Analysis (PCA): PCA is a widely

used feature reduction technique. By mapping the

original set of features into a smaller set of main

components, PCA can reduce the total number of

features (Genender-Feltheimer, 2018).

• t- Distributed Stochastic Neighbor Embedding (t-SNE):

t-SNE is a rare method in that it can preserve both the

local and global structure of the data. It does the

same for high-dimensional space, calculating the

likelihood of how similar two points are to one another

(Genender-Feltheimer, 2018).

• Linear Discriminant Analysis (LDA): LDA is a

mathematical method for analyzing different classes

of objects or items by combining many data points

and applying a function to the combined set

(Genender-Feltheimer, 2018).

2.6 ML Technique

Three ML methods are employed in this paper, they are

Random Forest, Decision Tree, and Adaptive Boosting.

• Random Forest: An RF is a collection of unpruned

classification trees constructed from randomly

selected subsets of the training data. The induction

procedure chooses features at random. Predictions

from an ensemble are combined to form a single

forecast (Arcelli Fontana & Zanoni, 2017).

• Decision Tree: A DT is an ML model that maps features
used instances instances smelly instances

and attributes to nodes, decisions, and rules to

branches, and outputs to leaves. It mirrors human-

level reasoning, making it incredibly simple to gather

the facts and generate intelligent conclusions. The

Table 1. Datasets Description objective is to organize all the data into a tree and

Long Parameter 57 420 140 280

List dataset

Switch Statement 57 420 140 280

dataset

RESEARCH PAPERS

P+R

TP+FP

TP+FN

TP+TN + FP + FN

process a single result at each leaf (Arcelli Fontana &

Zanoni, 2017).

• Adaptive Boosting: Adaptive Boosting, also

known as AdaBoost, is an ensemble method used

in machine learning. It strengthens a single

poor classifier by combining many weak ones

Accuracy (A) =
 TP + TN

Precision (P) =
 TP

Recall (R) =
 TP

F1 - Score (F1) = 2X
PXR

(1)

(2)

(3)

(4)

(Freund & Schapire, 1996).

2.7 Performance Measures

This paper tested the Accuracy, Recall, F1-score, and

precision using confusion metrics. At first, it uses the

abbreviations True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN) to indicate a result.

Accuracy Recall, F1-score, and precision were defined using

Equations 1 to 4.

3. Result And Discussion

This paper predicts Code Smells using data from two

Code Smell datasets, such as Switch Statements and

Long Parameter Lists. Tables 2 to 4 show the findings. In this

paper, PCA with DT, RF, and AdaBoost are denoted by

P_DT, P_RF, and P_AdaBoost. LDA with DT, RF, and AdaBoost

are represented by L_DT, L_RF, and L_AdaBoost,

respectively. T_DT, T_RF, and T_AdaBoost refer to t-SNE with

Numberof Switch Statement dataset Long Parameter List dataset

Components L_DT L_RF L_AdaBoost L_DT L_RF L_AdaBoost

 Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 87.97 87.93 87.97 87.93 91.24 91.20 91.65 91.71 91.65 91.71 92.72 92.69

Table 2. Result of LDA in Switch Statement and Long Parameter List Datasets

Numberof Switch Statement dataset Long Parameter List dataset

Components T_DT T_RF T_AdaBoost T_DT T_RF T_AdaBoost

 Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 82.12 81.97 80.90 80.79 76.27 76.31 78.39 78.37 78.73 78.46 68.98 68.12

2 82.99 82.93 85.90 85.92 70.29 70.37 80.33 80.85 83.34 83.54 70.20 69.38

3 73.69 74.10 79.21 79.29 67.68 65.40 71.28 71.62 74.47 74.24 61.16 61.28

Table 3. Result of t-SNE in Switch Statement and Long Parameter List Datasets

Numberof Switch Statement dataset Long Parameter List dataset

Components P_DT P_RF P_AdaBoost P_DT P_RF P_AdaBoost

 Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 59.12 59.87 59.12 58.87 62.86 66.60 58.87 58.46 58.87 58.46 57.30 57.88

2 70.60 71.25 75.58 76.83 74.91 75.32 63.31 63.97 69.14 69.44 57.47 58.24

3 81.25 81.24 85.04 85.35 81.77 82.21 66.68 67.05 71.96 72.19 64.38 65.33

4 80.56 80.39 84.52 84.75 79.88 80.09 69.65 70.34 75.33 75.51 65.96 66.13

5 80.94 81.28 85.22 85.48 81.07 81.26 79.43 79.75 84.91 85.38 76.43 76.89

6 84.02 84.30 87.62 87.75 81.42 81.49 78.71 79.05 86.16 86.57 75.20 75.60

7 83.33 83.34 87.63 87.82 83.31 83.13 81.91 82.33 86.51 87.01 78.19 78.64

8 83.33 83.56 88.14 88.20 86.41 86.52 82.97 83.42 87.95 88.19 80.51 81.10

9 82.81 82.97 87.79 87.84 84.68 84.83 81.91 82.40 87.94 88.15 79.25 79.54

10 81.43 81.50 87.62 87.78 85.37 85.42 83.33 83.74 88.11 88.40 81.21 81.44

11 82.30 82.26 88.14 88.08 84.18 84.28 82.61 83.02 87.58 87.82 82.09 82.53

12 82.30 82.62 88.31 88.20 85.22 84.98 84.93 85.18 88.30 88.56 82.25 82.75

13 81.78 82.15 88.48 88.53 85.38 85.48 84.92 85.05 88.29 88.48 82.45 82.91

With all 80.22 80.17 89.69 89.81 85.38 85.73 81.38 81.62 91.30 91.05 89.72 89.72

Components

Table 4. Result of PCA in Switch Statement and Long Parameter List Datasets

RESEARCH PAPERS

DT, RF, and AdaBoost, respectively. PCA is utilized with

different components from 1 to 13 in this paper. In the

case of a t-SNE, the maximum number of components is

three; it is utilized for three to one component. In the case

of LDA, it is utilized only one component because the

dataset belongs to a binary class.

P_RF model achieved the highest accuracy of 89.69%

and 91.30% with all components in the Switch Statement

dataset and Long Parameter List dataset, respectively. In

t-SNE, two components acquire the highest accuracy of

85.90% and 83.34% in the Switch Statement and Long

Parameter List datasets. In LDA highest accuracy

obtained are 91.24% in the Switch Statement dataset

and 92.72% in the Long Parameter List dataset.

Table 5 shows a comparative study of the results with

previous papers. This approach performs better in the

Switch Statement dataset, with the highest accuracy of

91.24%. In the Long Parameter List dataset, the approach

performed better than that (Alazba & Aljamaan, 2021). In

comparison, (Dewangan et al., 2022) got their result with

55 components, and the proposed system got its result

with one component. Comparatively, this paper gives

better results.

Conclusion

In this paper, three feature reduction techniques, PCA,

LDA, and t-SNE, are utilized with three ML algorithms. The

model is adequately trained using ten-fold cross-

validation. This paper focuses on two method-level Code

Smells that are publicly available. In order to fairly divide

up the various classes, the SMOTE Data Balancing Method

is considered. Improving performance while decreasing

required computing time is the primary focus of this

paper. It is found that the AdaBoost method with LDA

achieves the highest accuracy of 92.72% and 91.24% for

the Long Parameter List and Switch Statement Datasets,

respectively.

In the future, researchers will use parameter optimization

techniques to properly tune the model and apply different

ML algorithms to achieve better performance in Code

Smell detection.

References

[1]. Abdou, A. S., & Darwish, N. R. (2018). Early Prediction

Of Software Defect Using Ensemble Learning: A

Comparative Study. International Journal Of Computer

Applications, 179(46), 29-40.

[2]. Alazba, A., & Aljamaan, H. (2021). Code Smell

Detection Using Feature Selection And Stacking

Ensemble: An Empirical Investigation. Information And

Software Technology, 138, 106648. Https://Doi.Org/

10.1016/J.INFSOF.2021.106648

[3]. Aljamaan, H. (2021). Voting Heterogeneous

Ensemble For Code Smell Detection. Proceedings - 20th

IEEE International Conference On Machine Learning And

Applications, 897–902. Https://Doi.Org/10.1109/ICMLA

52953.2021.00148

[4]. Arcelli Fontana, F., Mäntylä, M. V., Zanoni, M., &

Marino, A. (2016). Comparing And Experimenting

Machine Learning Techniques For Code Smell Detection.

Empirical Software Engineering, 21(3), 1143-1191.

Https://Doi.Org/10.1007/S10664-015-9378-4/TABLES/24

[5]. ontana, F. A., & Zanoni, M. (2017). Code Smell Severity

Classification Using Machine Learning Techniques.

Knowledge-Based Systems, 128, 43-58. Https://Doi.Org/

10.1016/J.KNOSYS.2017.04.014

[6]. Catolino, G., Palomba, F., Fontana, F. A., De Lucia, A.,

Zaidman, A., & Ferrucci, F. (2020). Improving Change

Prediction Models With Code Smell-Related Information.

Year of
publication

Reference Datasets

Switch Statement Dataset Long Parameter List Dataset

 Approach Number of

components/
features

Accuracy (%) Approach Number of
components/

features

Accuracy (%)

2021 (Alazba & Aljamaan, 2021) GP 25 88.89 GP 22 92.50

2022 (Dewangan et al., 2022) PCA_KNN 9 85.72 PCA_LR and PCA_RF 55 94.05

 Proposed approach L_AdaBoost 1 91.24 L_AdaBoost 1 92.72

Table 5. Comparison of Result with Previous Work

 RESEARCH PAPERS

Empir ical Sof tware Engineering, 25(1), 49-95.

Https://Doi.Org/10.1007/S10664-019-09739-0/FIGURES/3

[7]. Dewangan, S., & Rao, R. S. (2022). Code Smell

Detection Using Classification Approaches. In Intelligent

Systems (Pp. 257 - 266) . Spr inger, S i ngapore.

Https://Doi.Org/10.1007/978-981-19-0901-6_25

[8]. Dewangan, S., Rao, R. S., Mishra, A., & Gupta, M.

(2021). A Novel Approach For Code Smell Detection: An

Empirical Study. IEEE Access, 9, 162869-162883.

Https://Doi.Org/10.1109/ACCESS.2021.3133810

[9]. Dewangan, S., Rao, R. S., Mishra, A., & Gupta, M.

(2022). Code Smell Detection Using Ensemble Machine

Learning Algorithms. Applied Sciences, 12(20), 10321.

Https://Doi.Org/10.3390/APP122010321

[10]. Dewangan, S., Rao, R. S., & Yadav, P. S. (2022, July).

Dimensionally Reduction Based Machine Learning

Approaches For Code Smells Detection. In 2022

International Conference On Intelligent Controller And

Computing For Smart Power (ICICCSP) (Pp. 1-4). IEEE.

Https://Doi.Org/10.1109/ICICCSP53532.2022.9862030

[11]. Fowler, M. (N.D.). Refactoring: Improving The Design

Of Existing Code. Https://Www.Amazon.In/Refactoring-

Improving- Exist ing-Addison-Wesley-Signature/ Dp/

0134757599

[12]. Freund, Y., & Schapire, R. E. (1996). Experiments

With A New Boosting Algorithm. Machine Learning:

Proceedings Of The Thirteenth International Conference,

1-9.

[13]. Genender-Feltheimer, A. (2018). Visualizing High

Dimensional And Big Data. Procedia Computer Science,

140, 112-121. Https://Doi.Org/10.1016/J.PROCS.2018.10.308

[14]. Kreimer, J. (2005). Adaptive Detection Of Design

Flaws. Electronic Notes In Theoretical Computer Science,

141(4), 117-136. Https://Doi.Org/10.1016/J.ENTCS.2005.

02.059

[15]. Liu, H., Jin, J., Xu, Z., Zou, Y., Bu, Y., & Zhang, L. (2019).

Deep Learning Based Code Smell Detection. IEEE

Transactions On Software Engineering, 47(9), 1811-1837.

Https://Doi.Org/10.1109/TSE.2019.2936376

[16]. Paiva, T., Damasceno, A., Figueiredo, E., &

Sant'Anna, C. (2017). On The Evaluation Of Code Smells

And Detection Tools. Journal Of Software Engineering

Research And Development, 5(1), 1–28. Https://Doi.Org/

10.1186/S40411-017-0041-1

[17]. Yadav, P. S., Dewangan, S., & Rao, R. S. (2021,

December). Extraction Of Prediction Rules Of Code Smell

Using Decision Tree Algorithm. In 2021 10th International

Conference On Internet Of Everything, Microwave

Engineering, Communication And Networks (IEMECON)

(Pp. 1-5). IEEE. Https://Doi.Org/10.1109/IEMECON53809.

2021.9689174

[18]. Yamashita, A., & Moonen, L. (2012, September). Do

Code Smells Reflect Important Maintainability Aspects?.

In 2012 28th IEEE International Conference On Software

Maintenance (ICSM) (Pp. 306-315). IEEE. Https://Doi.Org/

10.1109/ICSM.2012.6405287

ABOUT THE AUTHORS

D

