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ABSTRACT 

Code Smell refers to the telltale signs of poor code design that leads to software quality issues. Developers require specific 

methods to measure the complexity of Code Smells in order to resolve the problem quickly. Recent research has 

examined the problem of predicting Code Smell using various detection methods. However, the accuracy of machine 

learning-based Code Smell detectors is still at a normal level. One of the main objective of this paper is to assess how 

well dimensionality reduction methods can predict Code Smells. This paper uses three machine learning techniques with 

feature reduction techniques, such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor 

Embedding (t-SNE), and Linear Discriminate Analysis (LDA). Ten-fold cross-validation is used to ensure that the model is 

well-trained. Datasets are balanced using the Synthetic Minority Oversampling Technique (SMOTE) to ensure an equal 

number of classes in each dataset. The experimental result concluded that the AdaBoost method with LDA performs 

better in both the Long Parameter List and Switch Statement datasets, with an accuracy of 92.72% and 91.24%, 

respectively. 
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INTRODUCTION 

Software with a bad Code Smell has a structural flaw that 

could be difficult to fix in the future. There is a chance that 

it will slow down the operations or cause the software to 

crash. It is crucial to anticipate Code Smells early on. 

Code Smells can be predicted using the refactoring 

strategy's applications (Yamashita & Moonen, 2012). 

Code Smells can be reduced, software quality and 

maintenance can be improved through the refactoring 

process. 22 different types of code smells have been 

defined. (Fowler, n.d.). 

Due to the code's size and complexity, maintaining 

software on a massive scale is a formidable challenge. 

Software maintenance costs are more than 80% of the 

entire development price (Catolino et al., 2020). 

There are some limitations to the Code Smell detectors. 

Code Smells are typically challenging to pin down since the 

definitions are subject to interpretation (Paiva et al., 2017). 

This paper primarily focuses on measuring the efficacy of 

feature-reduction techniques for classifying Code Smells. 

This research used benchmark datasets from an earlier 

investigation by Arcelli Fontana et al. (2016); different 

machine learning (ML) models were used. 

The 420 instances are in the Long Parameter List and 

Switch Statement datasets, which are examples of 

method-level Code Smells. Software metrics are there in 

the datasets as features. This paper employs feature 

reduction methods to improve the accuracy of Code 

Smell prediction. This paper used three ML methods to 

identify Code Smells in datasets that employ a 

dimensionality reduction strategy. 

1. Literature Review 

Kreimer (2005) suggested a method for detecting two 
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Code Smells (Long Method and Large Class) in two 

different software applications using a Decision Tree (DT) 

model. The model's accuracy was entirely satisfactory. 

Liu et al. (2021) combined a deep learning strategy with 

bootstrap ensemble learning to identify four distinct 

smells in source code. Ten widely used open-source 

programs were used for testing and employed an 

automatic detection method to generate a massive 

collection of training data. The F-measure values for four 

different types of Code Smell detectors have improved, 

and the evaluation results demonstrate that the 

proposed model is significantly improved over prior 

techniques. 

Abdou and Darwish (2018) proposed a comparison study 

between individual and ensemble learners to forecast 

software errors. The preprocessing step of Synthetic 

Minority Oversampling Technique (SMOTE) resampling has 

been employed to rectify the data imbalance issue. 

Predicting software flaws has been done using several 

ensemble learning methods. 

Dewangan and Rao (2022) presented five ML classifiers to 

extract Code Smells from four Code Smell datasets. In 

addition, the essential features are extracted from each 

dataset using a feature selection technique. Using the 

Random Forest (RF) model on the feature envy dataset, 

and achieved 99.12% accuracy. 

Dewangan et al. (2022) discussed effective Code Smell 

detection and improvements, achieved with the 

application of Principal component analysis based 

Logistic regression (PCA_LR), Principal Component 

Analysis based k-nearest neighbor (PCA_KNN), Principal 

Component Analysis based Random Forest (PCA_RF), 

Principal Component Analysis based Decision Tree 

method (PCA_DT). The Data class obtains 99.97% 

accuracy with PCA_LR. 

Yadav et al. (2021) suggested a Decision Tree (DT) model 

to identify the Code Smell with hyperparameter tuning, 

which achieved an accuracy of 97.62% in both the blob 

class and the data class datasets. 

Alazba and Aljamaan (2021) used the gain metrics 

selection approach and a Stack-Support Vector Machine 

(SVM) model to get the best possible outcome. The 

model achieved 88.89% and 92.50% accuracy with the 

Gaussian Process (GP) classifier for the Switch Statement 

and Long Parameter List datasets. 

Aljamaan (2021) constructed a heterogeneous voting 

ensemble using DT, Logistic Regression, Support Vector 

Machine, Multi-Layer Perceptrons, and Stochastic Gradient 

Descent models. Soft voting was used to compile the 

predictions from different participants into an overall 

ensemble prediction. The voting ensemble obtains 91.8% 

and 87.8% accuracy in predicting the Long Parameter 

List and Switch Statement datasets, respectively. 

Dewangan et al. (2021) employed six ML approaches 

with chi-square and Wrapper- Based feature selection 

techniques. The classifier obtained 100% results using 

the Logistic Regression for Long Method dataset. 

Dewangan et al. (2022) presented a Code Smell 

prediction approach using ensemble ML. The author 

utilized five ML and two deep learning techniques and 

obtained 100% accuracy in the Long Method dataset. 

2. Research Methodologies 

Classifiers based on ML have been built to identify Code 

Smells. A solution to the data imbalance problem in 

training sets has been implemented using the SMOTE 

resampling method. The literature makes use of a wide 

variety of dimensionality reduction methods. Figure 1 

shows and explains the flow of the proposed experiment. 

 

Figure 1. Workflow of Proposed System 
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The  primary  objective  of  this  research  is  to  optimize 

feature reduction for improved classifier performance. 

2.1 Reference Datasets 

This investigation makes use of benchmark data used by 

(Arcelli Fontana et al., 2016). The 76 Java systems 

included in the datasets cover a wide range of classes, 

packages, and different application fields. The 76 

systems are used to calculate a huge number of object- 

oriented metrics. The definition of these measures was 

influenced by software quality factors like complexity, 

scale, and coupling. In this paper, Long Parameter List 

and Switch Statement datasets are used, they belong to 

method-level datasets. As shown in Table 1, each dataset 

contains 420 instances, of which 140 instances are smelly 

and 280 instances are non-smelly. 

2.2 Long Parameter List 

A Long Parameter List is an example of a Code Smell at 

the level of a method. As in this method, an excessively 

high number of parameters would make performing the 

function more challenging. This smell belongs to the 

Bloaters smell group (Alazba & Aljamaan, 2021). 

2.3 Switch Statement 

A Switch Statement Code Smell is an example of a 

method-level Code Smell. The smell is specified using a 

Switch Statement or a chain of if statements. There is a 

Code Smell which adds a new condition that requires so 

many other changes. These Code Smells come under 

object-oriented abusers (Alazba & Aljamaan, 2021). 

2.4 Data Preprocessing 

This process consists of several data pre-processing steps, 

such as missing value handling, data normalization, data 

balancing, cross-validation, and dimension reduction. 

When dealing with missing data, the mean value 

imputation method is applied. Min-max normalization is 

used in datasets. SMOTE is utilized to balance the number 
 

 

Code Smell Features Number of Number of Smelly Number of non- 

of classes in the datasets. To obtain better performance, 

ten-fold cross-validation is applied. It divides the dataset 

into ten parts, and for each iteration, one-fold is used as 

testing data, and the rest of the part is used as training 

data. 

2.5 Dimension Reduction 

Feature selection and feature reduction techniques 

come under "dimensionality reduction." In this paper, 

three feature reduction techniques are utilized in the 

Code Smell datasets. 

• Principal Component Analysis (PCA): PCA is a widely 

used feature reduction technique. By mapping the 

original set of features into a smaller set of main 

components, PCA can reduce the total number of 

features (Genender-Feltheimer, 2018). 

• t- Distributed Stochastic Neighbor Embedding (t-SNE): 

t-SNE is a rare method in that it can preserve both the 

local and global structure of the data. It does the 

same for high-dimensional space, calculating the 

likelihood of how similar two points are to one another 

(Genender-Feltheimer, 2018). 

• Linear   Discriminant   Analysis   (LDA):   LDA   is   a 

mathematical method for analyzing different classes 

of objects or items by combining many data points 

and applying a function to the combined set 

(Genender-Feltheimer, 2018). 

2.6 ML Technique 

Three ML methods are employed in this paper, they are 

Random Forest, Decision Tree, and Adaptive Boosting. 

• Random Forest: An RF is a collection of unpruned 

classification trees constructed from randomly 

selected subsets of the training data. The induction 

procedure chooses features at random. Predictions 

from an ensemble are combined to form a single 

forecast (Arcelli Fontana & Zanoni, 2017). 

• Decision Tree: A DT is an ML model that maps features 
used instances instances smelly instances 

and attributes to nodes, decisions, and rules to 

branches, and outputs to leaves. It mirrors human- 

level reasoning, making it incredibly simple to gather 

the facts and generate intelligent conclusions. The 

Table 1. Datasets Description objective is to organize all the data into a tree and 

Long Parameter 57 420 140 280 

List dataset     

Switch Statement 57 420 140 280 

dataset     
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TP+FP 

TP+FN 

TP+TN + FP + FN 

 

 
process a single result at each leaf (Arcelli Fontana & 

Zanoni, 2017). 

• Adaptive Boosting: Adaptive Boosting, also 

known as AdaBoost, is an ensemble method used 

in machine learning. It strengthens a single 

poor classifier by combining many weak ones 

 

Accuracy (A) =
 TP + TN 

 

Precision (P) =
  TP 

 

Recall (R) =
    TP 

 

F1 - Score (F1) = 2X 
PXR

 

 
(1) 

(2) 

(3) 

(4)

(Freund & Schapire, 1996). 

2.7 Performance Measures 

This paper tested the Accuracy, Recall, F1-score, and 

precision using confusion metrics. At first, it uses the 

abbreviations True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN) to indicate a result. 

Accuracy Recall, F1-score, and precision were defined using  

Equations 1 to 4. 

3. Result And Discussion 

This paper predicts Code Smells using data from two 

Code Smell datasets, such as Switch Statements and 

Long Parameter Lists. Tables 2 to 4 show the findings. In this 

paper, PCA with DT, RF, and AdaBoost are denoted by 

P_DT, P_RF, and P_AdaBoost. LDA with DT, RF, and AdaBoost 

are represented by L_DT, L_RF, and L_AdaBoost, 

respectively. T_DT, T_RF, and T_AdaBoost refer to t-SNE with 

 
Numberof Switch Statement dataset Long Parameter List dataset 

Components L_DT L_RF L_AdaBoost L_DT L_RF L_AdaBoost 

 Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score 

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

1 87.97 87.93 87.97 87.93 91.24 91.20 91.65 91.71 91.65 91.71 92.72 92.69 

 

Table 2. Result of LDA in Switch Statement and Long Parameter List Datasets 

 
 

Numberof Switch Statement dataset Long Parameter List dataset 

Components T_DT T_RF T_AdaBoost T_DT T_RF T_AdaBoost 

 Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score 

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

1 82.12 81.97 80.90 80.79 76.27 76.31 78.39 78.37 78.73 78.46 68.98 68.12 

2 82.99 82.93 85.90 85.92 70.29 70.37 80.33 80.85 83.34 83.54 70.20 69.38 

3 73.69 74.10 79.21 79.29 67.68 65.40 71.28 71.62 74.47 74.24 61.16 61.28 

 

Table 3. Result of t-SNE in Switch Statement and Long Parameter List Datasets 

 
 

Numberof Switch Statement dataset Long Parameter List dataset 

Components P_DT P_RF P_AdaBoost P_DT P_RF P_AdaBoost 

 Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score 

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

1 59.12 59.87 59.12 58.87 62.86 66.60 58.87 58.46 58.87 58.46 57.30 57.88 

2 70.60 71.25 75.58 76.83 74.91 75.32 63.31 63.97 69.14 69.44 57.47 58.24 

3 81.25 81.24 85.04 85.35 81.77 82.21 66.68 67.05 71.96 72.19 64.38 65.33 

4 80.56 80.39 84.52 84.75 79.88 80.09 69.65 70.34 75.33 75.51 65.96 66.13 

5 80.94 81.28 85.22 85.48 81.07 81.26 79.43 79.75 84.91 85.38 76.43 76.89 

6 84.02 84.30 87.62 87.75 81.42 81.49 78.71 79.05 86.16 86.57 75.20 75.60 

7 83.33 83.34 87.63 87.82 83.31 83.13 81.91 82.33 86.51 87.01 78.19 78.64 

8 83.33 83.56 88.14 88.20 86.41 86.52 82.97 83.42 87.95 88.19 80.51 81.10 

9 82.81 82.97 87.79 87.84 84.68 84.83 81.91 82.40 87.94 88.15 79.25 79.54 

10 81.43 81.50 87.62 87.78 85.37 85.42 83.33 83.74 88.11 88.40 81.21 81.44 

11 82.30 82.26 88.14 88.08 84.18 84.28 82.61 83.02 87.58 87.82 82.09 82.53 

12 82.30 82.62 88.31 88.20 85.22 84.98 84.93 85.18 88.30 88.56 82.25 82.75 

13 81.78 82.15 88.48 88.53 85.38 85.48 84.92 85.05 88.29 88.48 82.45 82.91 

With all 80.22 80.17 89.69 89.81 85.38 85.73 81.38 81.62 91.30 91.05 89.72 89.72 

Components             

Table 4. Result of PCA in Switch Statement and Long Parameter List Datasets 
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DT, RF, and AdaBoost, respectively. PCA is utilized with 

different components from 1 to 13 in this paper. In the 

case of a t-SNE, the maximum number of components is 

three; it is utilized for three to one component. In the case 

of LDA, it is utilized only one component because the 

dataset belongs to a binary class. 

P_RF model achieved the highest accuracy of 89.69% 

and 91.30% with all components in the Switch Statement 

dataset and Long Parameter List dataset, respectively. In 

t-SNE, two components acquire the highest accuracy of 

85.90% and 83.34% in the Switch Statement and Long 

Parameter List datasets. In LDA highest accuracy 

obtained are 91.24% in the Switch Statement dataset 

and 92.72% in the Long Parameter List dataset. 

Table 5 shows a comparative study of the results with 

previous papers. This approach performs better in the 

Switch Statement dataset, with the highest accuracy of 

91.24%. In the Long Parameter List dataset, the approach 

performed better than that (Alazba & Aljamaan, 2021). In 

comparison, (Dewangan et al., 2022) got their result with 

55 components, and the proposed system got its result 

with one component. Comparatively, this paper gives 

better results. 

Conclusion 

In this paper, three feature reduction techniques, PCA, 

LDA, and t-SNE, are utilized with three ML algorithms. The 

model is adequately trained using ten-fold cross- 

validation. This paper focuses on two method-level Code 

Smells that are publicly available. In order to fairly divide 

up the various classes, the SMOTE Data Balancing Method 

is considered. Improving performance while decreasing 

required computing time is the primary focus of this 

paper. It is found that the AdaBoost method with LDA 

achieves the highest accuracy of 92.72% and 91.24% for 

the Long Parameter List and Switch Statement Datasets, 

respectively. 

In the future, researchers will use parameter optimization 

techniques to properly tune the model and apply different 

ML algorithms to achieve better performance in Code 

Smell detection. 
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